TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - DELTA - Investigation of corrosion and microbially influenced corrosion processes by means of X-Ray absorption spectroscopy N2 - Alloys relevant for corrosion research are inherently complex in chemical composition and microstructure. Their local surface chemistry differs significantly from the bulk composition and their surfaces are subjected to ever changing environmental conditions. Thus, a thorough understanding of the mechanisms leading to material degradation and failure requires a detailed characterisation of the initial and final states as well as an adequate monitoring of the relevant properties as a function of time. Moreover, corrosion products tend to oxidize in contact with the atmosphere. Microbially influenced corrosion (MIC) poses a particular challenge regarding the experimental methods that can be used for the investigations. The use of highly sensitive methods of ultra-high vacuum surface analysis requires the removal of the biofilm, which leads to significant changes in the interfacial chemistry. In recent projects we applied X-ray absorption near edge spectroscopy (XANES) to investigate mechanisms of aqueous corrosion, high temperature corrosion and MIC processes of stainless steel and multi-principal element alloys (MPEAs). By combining in situ XANES studies on model thin films with ex situ XANES analysis of technical samples we aimed to obtain a holistic understanding of degradation processes. In this presentation we will summarize our results on the application of XANES to corrosion and MIC research with two case studies. In the first case study, in situ and ex situ XANES were used for the investigation of aqueous and high-temperature corrosion processes of alloys from FeNiCr-Mn MPEA family to clarify the role of Mn in determining the corrosion resistance and passive film formation. Our results indicate that Mn plays a major role in suppressing Fe oxidation. In the second example we have shown by means of in situ and ex situ XANES analysis that cultivation of metal reducing bacteria (MRB) in abundance of Fe(III) ions leads to a significant increase in electrochemical activity and thus, to an accelerated corrosion of the metallic substrate. This implies that bacterial colonies released from active corrosion sites might show a preconditioning effect and pose a higher corrosion risk. T2 - eMRS 2024 Spring Meeting CY - Strasbourg, France DA - 27.05.2024 KW - Corrosion KW - XANES KW - MIC KW - Multi-principal element alloys PY - 2024 AN - OPUS4-62636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - Material Acceleration Platforms of BAM (MAPs@BAM) N2 - Material Acceleration Platforms (MAPs) represent a transformative approach to the development of resilient and sustainable technology value chains. These platforms can identify candidate chemistries and structures via simulations, and database searches and leverage machine learning-based rapid screening to accelerate the discovery and deployment of novel materials, thereby addressing critical challenges in modern technology sectors. Incorporating high-fidelity advanced characterization in the early phases of material development is crucial for early de-risking. Advanced characterization techniques, such as X-ray diffraction, advanced electrochemical and spectroscopic techniques provide comprehensive insights into the structural, chemical, and physical properties of materials. Long-term testing further contributes to the de-risking process by evaluating the durability and stability of materials under various environmental and operational conditions. This presentation will briefly summarize how we address these issues at MAPs@BAM and provide deep-dives on best practices. As the demand for advanced materials continues to grow, MAPs will play an increasingly vital role in driving technological advancements and addressing global challenges. T2 - FutureLabsLive Basel CY - Basel, Switzerland DA - 25.06.2024 KW - MAPs@BAM PY - 2024 AN - OPUS4-62643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - Material Acceleration Platforms of BAM (MAPs@BAM) N2 - Material Acceleration Platforms (MAPs) represent a transformative approach to the development of resilient and sustainable technology value chains. These platforms can identify candidate chemistries and structures via simulations, and database searches and leverage machine learning-based rapid screening to accelerate the discovery and deployment of novel materials, thereby addressing critical challenges in modern technology sectors. Incorporating high-fidelity advanced characterization in the early phases of material development is crucial for early de-risking. Advanced characterization techniques, such as X-ray diffraction, advanced electrochemical and spectroscopic techniques provide comprehensive insights into the structural, chemical, and physical properties of materials. Long-term testing further contributes to the de-risking process by evaluating the durability and stability of materials under various environmental and operational conditions. This presentation will briefly summarize how we address these issues at MAPs@BAM and provide deep-dives on best practices. As the demand for advanced materials continues to grow, MAPs will play an increasingly vital role in driving technological advancements and addressing global challenges. T2 - EERA-JPNM Days Workshop (EERA-Joint Programme on Nuclear Materials) CY - Online meeting DA - 29.05.2024 KW - MAPs@BAM PY - 2024 AN - OPUS4-62642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - The interplay of anodic passivation and oxygen evolution on multi-principal element alloys (MPEAs) N2 - Multi-principal element alloys (MPEAs) are of great academic and industrial interest as emerging materials for engineering applications as well as potential electrode materials in energy conversion and storage. Several MPEAs have been studied for their general corrosion behavior, but studies on their dissolution in the high anodic “transpassive” potentials relevant for oxygen evolution reaction (OER) and local corrosion behavior remained scarce. In this project we have investigated CrMnFeCoNi, FeCrNi and CrCoNi MPEAs in terms of their transpassive behavior in NaCl electrolytes and artificial seawater [1, 2]. We introduced a characterization procedure to distinguish the individual contributions of oxygen evolution reaction (OER) and alloy dissolution [2]. This scheme utilizes scanning electrochemical microscopy (SECM) for detecting the onset of OER and employs quantitative chemical analysis methods, namely inductively coupled mass spectrometry (ICP-MS) and ultraviolet-visible light (UV-Vis) spectroscopy, to elucidate the processes of metal dissolution. In-situ atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM) were used to analyze the corrosion morphology and surface potentials before, during, and after passivity breakdown. Our results clearly demonstrate the superior corrosion behavior of CrCoNi and FeCrNi MPEA in comparison to the CrFeMnCoNi HEA, as well as AISI 304 stainless steel. We have observed that significant OER occurs in parallel with metal dissolution on the CrCoNi and FeCrNi MPEA surfaces during anodic polarization at potentials relevant to water electrolysis. Most importantly, our findings underscore the necessity of analyzing metal ions dissolved into the electrolyte to accurately assess the Faradaic efficiencies of non-noble metal OER electrocatalysts. The presentation will summarize our characterization procedure and give an overview on the key properties of the studied MPEAs.  [1] A. Wetzel, M. von der Au, P.M. Dietrich, J. Radnik, O. Ozcan, J. Witt, The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy, Appl. Surf. Sci., 601 (2022) 154171. [2] A. Wetzel, D. Morell, M. von der Au, G. Wittstock, O. Ozcan, J. Witt, Transpassive Metal Dissolution vs. Oxygen Evolution Reaction: Implication for Alloy Stability and Electrocatalysis, Angew. Chem. Int. Ed. Engl., n/a (2024) e202317058. T2 - ECASIA 2024 CY - Gothenburg, Sweden DA - 09.06.2024 KW - CCMat KW - Corrosion KW - Electrocatalysis KW - Oxygen evolution reaction PY - 2024 AN - OPUS4-62637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - State-of-the-art in map development: Best practices for application in nuclear materials N2 - Material Acceleration Platforms (MAPs) represent a transformative approach to the development of resilient and sustainable technology value chains. These platforms can identify candidate chemistries and structures via simulations, and database searches and leverage machine learning-based rapid screening to accelerate the discovery and deployment of novel materials, thereby addressing critical challenges in modern technology sectors. Incorporating high-fidelity advanced characterization in the early phases of material development is crucial for early de-risking. Advanced characterization techniques, such as X-ray diffraction, advanced electrochemical and spectroscopic techniques provide comprehensive insights into the structural, chemical, and physical properties of materials. Long-term testing further contributes to the de-risking process by evaluating the durability and stability of materials under various environmental and operational conditions. This presentation will briefly summarize how we address these issues at MAPs@BAM and provide deep-dives on best practices. As the demand for advanced materials continues to grow, MAPs will play an increasingly vital role in driving technological advancements and addressing global challenges. T2 - CONNECT-NM European Partnership Kick-off Meeting CY - Madrid, Spain DA - 02.10.2024 KW - MAPs@BAM KW - Corrosion PY - 2024 AN - OPUS4-62646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - Material Acceleration Platforms of BAM (MAPs@BAM) N2 - Material Acceleration Platforms (MAPs) represent a transformative approach to the development of resilient and sustainable technology value chains. These platforms can identify candidate chemistries and structures via simulations, and database searches and leverage machine learning-based rapid screening to accelerate the discovery and deployment of novel materials, thereby addressing critical challenges in modern technology sectors. Incorporating high-fidelity advanced characterization in the early phases of material development is crucial for early de-risking. Advanced characterization techniques, such as X-ray diffraction, advanced electrochemical and spectroscopic techniques provide comprehensive insights into the structural, chemical, and physical properties of materials. Long-term testing further contributes to the de-risking process by evaluating the durability and stability of materials under various environmental and operational conditions. This presentation will briefly summarize how we address these issues at MAPs@BAM and provide deep-dives on best practices. As the demand for advanced materials continues to grow, MAPs will play an increasingly vital role in driving technological advancements and addressing global challenges. T2 - International Cooperation on Innovative Materials for Energy Workshop CY - Brussels, Belgium DA - 19.04.2024 KW - MAPs@BAM PY - 2024 AN - OPUS4-62641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - Autonomous exploration of new alloy chemistries using a Material Acceleration Platform (MAP) N2 - The discovery and commercialization of new corrosion resistant alloys by conventional approaches and manual experimentation is a slow and expensive process. In the last few years, efforts have been dedicated internationally to design self-driving-laboratories, also called Material Acceleration Platforms (MAPs). MAPs integrate material synthesis, characterization and testing modules into circular workflows through automation and use artificial intelligence (AI) for efficient and autonomous experiment design, property prediction and data analysis. We have established a MAP for corrosion research by automating diverse liquid operations, electrochemical testing and data evaluation, where the test results are interpreted via a machine learning (ML)-based backend. The workflows of the electrochemistry module are configured for electrodeposition of different alloys and subsequently performing electrochemical corrosion testing. The platform uses the results of the electrochemical tests to determine the next set of deposition parameters in a continuous and autonomous loop until the user-defined objectives are met. In this project we used the MAP to design new multi-principal element alloys (MPEAs) as corrosion resistant electrode materials for H2O and CO2 electrolysis. One campaign contains a maximum of 144 runs. From each successful campaign top five leads and another five randomly selected materials proceed to upscaling either by electrodeposition at larger scale or as bulk ingots cast by means of arc-melting. With these samples, a detailed chemical and electrochemical characterization using surface analysis techniques was performed to validate the success of the MAP-based optimization. The presentation will give an overview of the design and build phases of our MAP, its modules and workflows. Moreover, we will summarize our results from the FeNiCrCuCoMo MPEA system. T2 - EUROCORR 2024 CY - Paris, France DA - 01.09.2024 KW - MAPs@BAM KW - Corrosion KW - Electrodeposition KW - Material Acceleration Platform KW - Electrochemistry PY - 2024 AN - OPUS4-62635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - MAPz@BAM Material Acceleration Plattform Zentrum @ BAM N2 - Die Material Acceleration Platform der BAM (MAPz@BAM) bündelt unsere Automatisierungs-Expertise auf dem Gebiet der Materialwissenschaft und -prüfung. Wir entwickeln modulare Experimentmodule, automatische Prüf- und Auswerteverfahren und setzen künstliche Intelligenz für eine effiziente und autonome Versuchsplanung, - vorhersage und Datenanalyse ein. T2 - Kick off Meeting / EnerMAC ZIM Network CY - Berlin, Germany DA - 07.12.2023 KW - Material Acceleration Platforms (MAPs) KW - Self-driving-labs (SDLs) KW - MAPz@BAM PY - 2023 AN - OPUS4-59411 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - MAPz@BAM Material Acceleration Plattform Zentrum @ BAM N2 - Die Material Acceleration Platform der BAM (MAPz@BAM) bündelt unsere Automatisierungs-Expertise auf dem Gebiet der Materialwissenschaft und -prüfung. Wir entwickeln modulare Experimentmodule, automatische Prüf- und Auswerteverfahren und setzen künstliche Intelligenz für eine effiziente und autonome Versuchsplanung, - vorhersage und Datenanalyse ein. T2 - TechConnect Adlershof: Grand Solutions CY - Berlin, Germany DA - 06.11.2023 KW - Material Acceleration Platforms (MAPs) KW - Self-driving-labs (SDLs) KW - MAPz@BAM PY - 2023 AN - OPUS4-59412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Özcan Sandikcioglu, Özlem T1 - Exploration of Fe-Ni-Cr-X systems using diffusion couples for new alloy chemistries with improved mechanical and corrosion properties N2 - Multi-principal element alloys (MPEAs) are disrupting methodologies in conventional alloy design, characterized by a singular dominant element dictating composition. The traditional optimization of the functional properties of alloys primarily relies on microalloying techniques. The advent of MPEAs has significantly broadened the chemical landscape available for exploration, approaching near-infinite possibilities. Consequently, innovative methodologies are imperative for discovering new alloys that exhibit properties customized for specific applications, simultaneously mitigating dependence on critical minerals. One promising approach for rapid screening of possible alloy chemistries and exploring the hitherto untouched regions of ternary, quaternary or higher order phase diagrams is the use of diffusion couples and multiples. The present study focusses on the exploration of quaternary multi-principle-element alloys (MPEAs) using diffusion multiples. We established diffusion systems by combining an equimolar ternary alloy (FeNiCr) with single diffusing elements Mn, Mo and Ta. Using ThermoCalc® and DICTRA® simulations, we determined suitable parameters (temperature and diffusion time) that would lead to the formation of single-phase alloys and diffusion lengths (>50 μm) that suit the application of high-resolution characterization methods. Microstructural and compositional characterization was performed via scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX), electron probe microanalyzer (EPMA) and correlated to local mechanical properties evaluated by means of nanoindentation. Selected compositions from the diffusion couples were recast and homogenized to obtain bulk samples for the assessment of high-temperature and aqueous corrosion properties. Our results indicate that the ThermoCalc simulations have a good predictive power for crystallographic phases for Mn and Mo containing MPEAs derived from the diffusion couples. Moreover, our data on FeCrNi-Ta system provides valuable experimental input for respective databases necessary for simulation of phase diagrams. The presentation will summarize our methodology using diffusion couples as an efficient tool for exploring compositional spaces of MPEAs in the search for novel alloy chemistries and the results of our correlative study on the mechanical and corrosion properties of the selected quaternary systems. T2 - EUROCORR 2024 CY - Paris, France DA - 01.09.2024 KW - CCMat KW - Corrosion KW - Diffusion couples KW - Multi-principal element alloys PY - 2024 AN - OPUS4-62634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -