TY - CONF A1 - Kromm, Arne A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress formation in selective laser melted parts of Alloy 718 N2 - Additive manufacturing (AM) by selective laser melting (SLM) offers ample scope for producing geometrically complex parts as compared to the traditional subtractive manufacturing strategies. However, the residual stresses which develop during the process can limit the application of SLM parts because they can reduce the load bearing capacity as well as induce unwanted distortion depending on the boundary conditions specified in manufacturing. This study aims at the characterization of residual stresses in SLM parts by using different measurement techniques. The material used is the nickel based super Alloy 718. Microstructure as well as surface and bulk residual stresses were characterised. For residual stress analysis X-ray, synchrotron and neutron diffraction were applied. The results show different residual stress states dependent on the penetration depth in the sample offered by the different measurement techniques. Samples of Alloy 718 manufactured by SLM process can show high tensile residual stresses in the surface as high as the yield strength of the wrought alloy. Residual stresses in the bulk show considerably lower stress values. T2 - 1st International Congress on Welding, Additive Manufacturing and associated non-destructive testing - ICWAM CY - Metz, France DA - 17.05.2017 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual stresses PY - 2017 AN - OPUS4-40345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Cabeza, S. A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Bruno, Giovanni A1 - Portella, Pedro Dolabella T1 - Residual stress Formation in selective laser melted parts of Alloy 718 N2 - Additive Manufacturing (AM) through the Selective Laser Melting (SLM) route offers ample scope for producing geometrically complex parts compared to the conventional subtractive manufacturing strategies. Nevertheless, the residual stresses which develop during the fabrication can limit application of the SLM components by reducing the load bearing capacity and by inducing unwanted distortion, depending on the boundary conditions specified during manufacturing. The present study aims at characterizing the residual stress states in the SLM parts using different diffraction methods. The material used is the nickel based superalloy Inconel 718. Microstructure as well as the surface and bulk residual stresses were characterized. For the residual stress analysis, X-ray, synchrotron and neutron diffraction methods were used. The measurements were performed at BAM, at the EDDI beamline of -BESSY II synchrotronand the E3 line -BER II neutron reactor- of the Helmholtz-Zentrum für Materialien und Energie (HZB) Berlin. The results reveal significant differences in the residual stress states for the different characterization techniques employed, which indicates the dependence of the residual state on the penetration depth in the sample. For the surface residual stresses, longitudinal and transverse stress components from X-ray and synchrotron agree well and the obtained values were around the yield strength of the material. Furthermore, synchrotron mapping disclosed gradients along the width and length of the sample for the longitudinal and transverse stress components. On the other hand, lower residual stresses were found in the bulk of the material measured using neutron diffraction. The longitudinal component was tensile and decreased towards the boundary of the sample. In contrast, the normal component was nearly constant and compressive in nature. The transversal component was almost negligible. The results indicate that a stress re-distribution takes place during the deposition of the consecutive layers. Further investigations are planned to study the phenomenon in detail. T2 - European Conference on Residual Stresses - ECRS10 CY - Leuven, Belgium DA - 11.09.2018 KW - Additive Manufacturing KW - Selective Laser Melting KW - Residual Stresses PY - 2018 AN - OPUS4-45979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Thomas, Maximilian A1 - Liepold, Philipp A1 - Kannengießer, Thomas A1 - Gibmeier, J. T1 - Hot Cracking Behavior of LTT Alloys under Variable Conditions in the Varestraint Test N2 - The use of Low Transformation Temperature (LTT) filler materials is an innovative way to reduce welding residual stresses. The generation of compressive residual stresses in the weld and heat-affected zone can lead to an improvement of the fatigue life of high-strength welds. However, high-alloy filler metals can be prone to solidification cracking. Two important LTT alloys were evaluated under variable welding and loading parameters using the Modified Varestraint/Transvarestraint (MVT) test. Initially conflicting results were interpreted using a newly developed image-based crack detection routine [1]. Based on the melt pool dimensions, the shape of the isotherms is reconstructed, and the theoretical crack growth along numerically determined crystallization paths is considered in relation to the cracks observed. Decreasing welding speeds with simultaneously higher heat input promote crack formation with increasing strain rate. T2 - International Joint Conference EMPOrIA 2023 CY - Aachen, Germany DA - 16.05.2023 KW - LTT KW - Solidification cracking KW - Varestraint test PY - 2023 AN - OPUS4-57546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Wimpory, R. C. A1 - Gook, S. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Influence of Residual Stresses on Stress Relief Cracking of Thick-Walled Creep-Resistant Steel Welds N2 - Controlling the residual stress level during welding of creep-resistant Cr-Mo-V steels is crucial to avoid so called stress relief cracking (SRC) during post weld heat treatment (PWHT) of large-scale components. In the present study, a laboratory scale test specimen (400 mm x 400 mm x 25 mm) was used to simulate thick-walled component welds made of 13CrMoV9-10. The aim was to identify the level and distribution of residual stresses to evaluate the suitability of the specimen for laboratory based SRC testing. High restraint was ensured by the specimen geometry with a narrow welding gap in the center. This gap was filled by submerged arc welding in a multi-layer technique. Two specimens were welded with identical parameters and compared in the as-welded state and after PWHT (705 °C for 10 h). Neutron diffraction was used to determine the residual stresses in the weld metal, the heat-affected zone (HAZ) and the base material at different depths longitudinal, transverse, and normal to the welding direction. The experiments were performed on the instrument E3 of the research reactor BERII of HZB Berlin, Germany. Complementarily, laboratory X-ray diffraction was applied to characterize the surface residual stresses. In the welded state, especially in the weld metal and the adjacent HAZ, the residual stress can reach the yield strength of the untreated material. The highest levels occur in the longitudinal direction. The transverse and normal directions are characterized by residual stress of lower magnitude. As expected, the residual stress is almost completely relieved after PWHT. T2 - AJP 2023 3rd International Conference on Advanced Joining Processes CY - Braga, Portugal DA - 19.10.2023 KW - Residual stress KW - Creep-resistant steel KW - Stress relief cracking KW - Neutron diffraction PY - 2023 AN - OPUS4-58646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Residual stress formation in DED-arc manufactured high strength steel components N2 - Additive manufacturing (AM) processes enable the efficient production of advanced constructions. Direct energy deposition processes such as wire and arc-based additive manufacturing (DED-arc) are important methods. The wire filler metals enable a wide range of materials. In addition, the arc process provides a high deposition rate compared to laser and powder-based processes. Furthermore, components can be manufactured near-net-shape, offering significant savings in cost, time, and resources. Combined with the use of high-strength steels to reduce wall or component thicknesses in the context of lightweight design, great opportunities for saving energy and resources can be achieved. In a joint project of BAM and Chemnitz University of Technology, the main influences and complex interactions of material, production process, design and processing steps on the residual stress level are investigated. The aim is to develop processing recommendations and a cold cracking test for economical processing and stress-related design of high-strength steels with DED-arc. This study focuses on residual stress analysis by neutron diffraction (ND) and X-ray diffraction (XRD) on defined test specimens. The ND analysis were performed at the Paul Scherrer Institute (PSI) and the XRD analysis at BAM. The study shows a quantitative and qualitative comparison of the residual stress magnitudes and distribution between the component bulk (ND) and surface (XRD) analyses. The ND analysis reveals that in DED-arc AM walls the residual stresses dominate in the direction of welding and are negligibly small in each case transverse to the direction of welding. The topology of the analyzed residual stresses shows almost identical residual stress maps. In addition, the residual stresses are significantly influenced by the solid phase transformation of the material due to low cooling times in the area of the top layer. T2 - AJP 2023 3rd International Conference on Advanced Joining Processes CY - Braga, Portugal DA - 19.10.2023 KW - DED-arc KW - Residual stress KW - Neutron diffraction KW - High-strength steel KW - Additive manufacturing PY - 2023 AN - OPUS4-58647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Liepold, Philipp A1 - Kannengießer, Thomas T1 - Investigation of restraint intensity influence on solidification cracking of high-strength filler materials in fillet welds via CTS testing N2 - Next to chemical composition, metallurgy and welding parameters, the intensity of restraint is one of the variables influencing solidification cracking. Tests like the Houldcroft Test, rate the hot cracking susceptibility indirectly on the amount of restraint the welding can endure without cracking. Modern lightweight steel construction welds can be subject to a larger amount of restraint due to their high-strength nature compared to classical use cases. By varying the plate thickness of Controlled Thermal Severity (CTS) tests produced out of S1100 QL, it was possible to vary the intensity of restraint on fillet welds at a high level. Testing was conducted with four different filler wires for Metal Active Gas (MAG) welding, including three solid and one metal-cored wire. In addition, two sets of welding parameters were tested. The first set with high heat input and high welding speed was shown to be more prone to solidification cracking compared to the second set with lower heat input and welding speed. The results show an increase in solidification cracking with increasing restraint severity. T2 - IIW Intermediate Meeting Comission II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Solidification cracking KW - High strength steel KW - Weldability PY - 2024 AN - OPUS4-59748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Hübner, Martin A1 - Dittmann, F. A1 - Varfolomeev, I. A1 - Kannengießer, Thomas T1 - Residual stress reduction using LTT welding consumables with focus on the weld geometry N2 - This article focuses on the selective placement of additional LTT layers to generate compressive residual stresses in fatigue-critical areas of conventional weld joints. This enables an economical solution without effecting the integrity of welded joints. For this, longitudinal stiffeners made of high-strength steel were gas metal arc welded using conventional welding consumable in the first layer. Afterwards, a chromium-nickel alloyed LTT welding consumable was deposit on front sides of the stiffeners. By varying the welding parameters, different weld geometries of the LTT filler metal could be analyzed. The effects of additional LTT layers were investigated with regards to residual stresses, microstructure and strength. X-ray residual stresses measurements show that the residual stresses at the failure critical weld toe are significantly reduced by using additional LTT layers. While the conventional weld is characterized by tensile residual stresses, compressive residual stresses can be detected at the LTT weld. The level of residual stresses is influenced by the geometry of the LTT layer. Additional LTT layers with a high offset to the conventional weld generate more compressive residual stress in the HAZ than with a low offset. Therefore, the weld geometry has a considerable impact on the residual stress profile. T2 - IIW Intermediate Meeting Comission II-A CY - Incheon, Republic of Korea DA - 12.03.2024 KW - LTT KW - Residual stress KW - High strength steel PY - 2024 AN - OPUS4-59747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Wandtke, Karsten A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Influence of machining on residual stresses in additive manufactured high-strength steel components N2 - This study focuses on the effect of machining on the residual stresses and distortion of WAAM specimens. Defined specimens were welded fully automatically with a special WAAM solid wire (yield strength >820 MPa) with different geometric designs. The residual stresses state before and after cutting of the AM structure from the substrate plate were analyzed by means of X-ray diffraction on the specimen surface and complementary by 3d deformation analyses using photogrammetry. The results reveal significant influences of the geometry on the relaxation and redistribution of residual stresses. T2 - IIW Intermediate Meeting Comission IX-AM CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Residual stress KW - DED-arc KW - High strength steel PY - 2024 AN - OPUS4-59751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Liepold, Philipp A1 - Kannengießer, Thomas T1 - Investigation of hot cracking susceptibility via Modified Varestraint Transvarestraint testing of high-strength filler material N2 - MVT testing was conducted in Transvarestraint mode in multiple welding conditions and under a range of bending speeds. The materials observed were high strength filler metals used in GTAW namely DIN EN ISO 16834-A G 69 4 M21 Mn3Ni1CrMo (G69), 16834-A G 89 6 M21 Mn4Ni2CrMo (G89 6), 16834-A G 89 5 M21 Mn4Ni2,5CrMo (G89 5) and a filler wire 18276-A T 89 4 ZMn2NiCrMo M M21 1 H5 (T89). For evaluation light optical microscope pictures were used. Pixels containing cracks were manually segmented using a self-written program. Out of the segmented images data including crack length, position and area can be calculated for every crack. The results show dependencies of solidification cracking on the test parameters. T2 - IIW Intermediate Meeting Comission II-C CY - Incheon, Republic of Korea DA - 12.03.2024 KW - Solidification cracking KW - High strength steel KW - Varestraint test PY - 2024 AN - OPUS4-59749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Wandtke, Karsten A1 - Engelking, Lorenz A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Hensel, J. T1 - Einfluss spanender Bearbeitungsschritte auf die Eigenspannungen additiv gefertigter Komponenten aus hochfestem Stahl N2 - Diese Studie konzentriert sich auf den Einfluss der Bearbeitung auf die Eigenspannungen und den Verzug von WAAM-Proben. Definierte Proben wurden vollautomatisch mit einem speziellen WAAM-Massivdraht (Streckgrenze >820 MPa) mit unterschiedlichen geometrischen Designs geschweißt. Der Eigenspannungszustand vor und nach dem Abtrennen der AM-Struktur von der Substratplatte wurde mittels Röntgenbeugung an der Probenoberfläche analysiert und durch 3D-Verformungsanalysen mittels Photogrammetrie ergänzt. Die Ergebnisse zeigen einen signifikanten Einfluss der Geometrie auf die Relaxation und Umverteilung der Eigenspannungen. T2 - NA 092-00-05 GA "Gemeinschaftsarbeitsausschuss NAS/NMP: Zerstörende Prüfung von Schweißverbindungen (DVS AG Q 4/Q 4.1) CY - Berlin, Germany DA - 20.03.2024 KW - DED-arc KW - Eigenspannungen KW - Hochfester Stahl PY - 2024 AN - OPUS4-59753 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -