TY - JOUR A1 - Pellegrino, F. A1 - Sordello, F. A1 - Mino, L. A1 - Minero, C. A1 - Hodoroaba, Vasile-Dan A1 - Martra, G. A1 - Maurino, V. T1 - Formic acid photoreforming for hydrogen production on shape-controlled anatase TiO2 nanoparticles: Assessment of the role of fluorides, {101}/{001} surfaces ratio, and platinization N2 - Hydrogen production via formate photoreforming on TiO2 is characterized by marked dependence on the ratio between {101} and {001} surfaces for anatase nanoparticles. We observed higher rates of hydrogen Evolution with the increase of the {101} facets presence, owing to their reductive nature. This helps the Pt photodeposition in the early stages of Irradiation and, then, the hydrogen ion reduction reaction. The selective photodeposition of 2 nm Pt nanoparticles on {101} facets was confirmed by transmission electron microscopy (TEM) micrographs. The results are confirmed also by experiments carried out without the use of Pt as cocatalyst and by photoelectrochemical measurements. The work also explains the marginal effect of the fluorination on the H2 evolution. KW - Titanium dioxide KW - Fluoride KW - Platinum KW - Nanoparticles KW - Controlled-shape KW - Hydrogen photoproduction KW - Surface PY - 2019 UR - https://pubs.acs.org/doi/10.1021/acscatal.9b01861 DO - https://doi.org/10.1021/acscatal.9b01861 SN - 2155-5435 VL - 9 IS - 8 SP - 6692 EP - 6697 PB - ACS Publications AN - OPUS4-48355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg A1 - Müller, Anja T1 - Introduction to photoelectronspectroscopy N2 - A short introduction to XPS/ESCA with the focus on nanoparticles and the preparation of such particles for the measurements T2 - Meeting of ACE Nano CY - Berlin, Germany DA - 18.02.2019 KW - ESCA/XPS KW - Nanoparticles KW - Preparation PY - 2019 AN - OPUS4-47437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rohner, C. A1 - Braun, Ulrike A1 - Schlögl, R. A1 - Lunkenbein, T. T1 - Electron beam induced amorphisation of polypropylene particles N2 - Untersuchung von Polypropylen Nanopartikeln mittels REM. Es wird die Hypothese aufgestellt, dass mit der Paarverteilungsfunktion auf den Alterunszustand geschlossen werden kann. N2 - Analysis of polypropylene nanoparticles with scanning elektron spectroscopy (SEM). The poster describes the hypothesis that the pair distribution function determined by SEM can be used to deduce the state of polymer age. T2 - Microscopy characterisation of organic-inorganic interfaces 2019 CY - Berlin, Germany DA - 07.03.2019 KW - Nanopartikel KW - Mikroplastik-Analytik KW - Paarverteilungsfunktion KW - Pair distribution function KW - Nanoparticles KW - Microplastic analysis PY - 2019 AN - OPUS4-47890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Nirmalananthan-Budau, Nithiya A1 - Roloff, Alexander A1 - Resch-Genger, Ute T1 - Surface Functional Group Quantification on Micro- and Nanoparticles N2 - Organic and inorganic micro- and nanoparticles are increasingly used as drug carriers, fluorescent sensors, and multimodal labels in the life and material sciences. Typically, these applications require further functionalization of the particles with, e.g., antifouling ligands, targeting bioligands, stimuli-responjsive caps, or sensor molecules. Besides serving as an anchor point for subsequent functionalization, the surface chemistry of these particles also fundamentally influences their interaction with the surrounding medium and can have a significant effect on colloidal stability, particle uptake, biodistribution, and particle toxicity in biological systems. Moreover, functional groups enable size control and tuning of the surface during the synthesis of particle systems. For these reasons, a precise knowledge of the chemical nature, the total number of surface groups, and the number of groups on the particle surface that are accessible for further functionalization is highly important. In this contribution, we will will discuss the advantages and limitiations of different approaches to quantify the amount of commonly used surface functional groups such as amino,[1,2] carboxy,[1,2] and aldehyde groups.[3] Preferably, the quantification is carried out using sensitive and fast photometric or fluorometric assays, which can be read out with simple, inexpensive instrumentation and can be validated by complimentary analytic techniques such as ICP-OES and quantitative NMR. T2 - NANAX Hamburg CY - Hamburg, Germany DA - 16.09.2019 KW - Microparticles KW - Nanoparticles KW - Quantitative Analysis KW - Surface KW - Funtional Groups PY - 2019 AN - OPUS4-49616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - In-situ SAXS/WAXS investigation of zinc oxide nanotube formation N2 - Zinc oxide nanostructures possess optical properties that are dependent on particle shape and size. Here, we report on the synthesis of elongated zinc oxide tubes via the in-situ aggregation of spherical particles. Using a custom-built, lab-based instrument, x-ray scattering can be investigated over more than three decades in scattering vector q, allowing for a complete investigation from atomic distances up to larger-than-nano structures. For this study, the hydrolytic synthesis of stearate stabilized zinc oxide nanostructures in tetrahydrofuran was performed and the reaction mixture was continuously fed through the SAXS/WAXS apparatus by means of a peristaltic pump. For comparison to nanospheres, oleate-functionalized zinc oxide particles were synthesized in a microwave-assisted fashion, and depending on reaction temperature, sphere radii could be adjusted between 2.6 and 3.8 nm, changing the optical and crystal lattice properties. The evaluation of the in-situ measurements showed that at the beginning of the synthesis of the stearate-stabilized zinc oxide, similar, spherical particles are formed as in the oleate-based synthesis. In contrast, as the reaction progresses, the stearate-capped particles aggregate into elongated rods with radii of a few nanometres, which eventually form the nanotubes. These have radii of 30-50 nm and lengths of several hundred nanometres. Nevertheless, these structures still possess optical properties like the ultra-small zinc oxide spheres, i.e. a bright, yellow fluorescence. Therefore, we assume that the originally formed, ultra-small spheres, are still present within the tube structure, but separated by stearate, and thus determine their fluorescence properties. T2 - SAXS excites CY - Graz, Austria DA - 24.09.2019 KW - SAXS KW - Zinc oxide KW - Nanoparticles PY - 2019 AN - OPUS4-49135 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Microwave-Assisted Synthesis of Ultrasmall Zinc Oxide Nanoparticles N2 - We report on ultrasmall zinc oxide single-crystalline nanoparticles of narrow size distribution and long-term colloidal stability. These oleate-stabilized nanoparticles were synthesized using microwave-assisted synthesis for 5 min, corresponding to a 99% decrease in synthesis time, when compared to the conventional synthesis method. It was observed that the average particle radius increases from 2.6 ± 0.1 to 3.8 ± 0.1 nm upon increasing synthesis temperature from 125 to 200 °C. This change also corresponded to observed changes in the optical band gap and the fluorescence energy of the particles, from 3.44 ± 0.01 to 3.36 ± 0.01 eV and from 2.20 ± 0.01 to 2.04 ± 0.01 eV, respectively. Small-angle X-ray scattering, dynamic light scattering, and UV–vis and fluorescence spectroscopy were employed for particle characterization. Debye–Scherrer analysis of the X-ray diffraction (XRD) pattern reveals a linear increase of the crystallite size with synthesis temperature. The consideration of the convolution of a Lorentz function with a Gaussian function for data correction of the instrumental peak broadening has a considerable influence on the values for the crystallite size. Williamson–Hall XRD analyses in the form of the uniform deformation model, uniform stress deformation model, and uniform deformation energy density model revealed a substantial increase of strain, stress, and deformation energy density of the crystallites with decreasing size. Exponential and power law models were utilized for quantification of strain, stress, and deformation energy density. KW - SAXS KW - Zinc oxide KW - Microwave synthesis KW - Nanoparticles PY - 2019 DO - https://doi.org/10.1021/acs.langmuir.9b01921 SN - 0743-7463 VL - 35 IS - 38 SP - 12469 EP - 12482 PB - American Chemical Society CY - Washington, D.C., USA AN - OPUS4-49136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sarhan, R. M. A1 - Koopman, W. A1 - Schuetz, R. A1 - Schmid, Thomas A1 - Liebig, F. A1 - Koetz, J. A1 - Bargheer, M. T1 - The importance of plasmonic heating for the plasmondriven photodimerization of 4-nitrothiophenol N2 - Metal nanoparticles form potent nanoreactors, driven by the optical generation of energetic electrons and nanoscale heat. The relative influence of these two factors on nanoscale chemistry is strongly debated. This article discusses the temperature dependence of the dimerization of 4-nitrothiophenol (4-NTP) into 4,4′-dimercaptoazobenzene (DMAB) adsorbed on gold nanoflowers by Surface-Enhanced Raman Scattering (SERS). Raman thermometry shows a significant optical heating of the particles. The ratio of the Stokes and the anti-Stokes Raman signal moreover demonstrates that the molecular temperature during the reaction rises beyond the average crystal lattice temperature of the plasmonic particles. The product bands have an even higher temperature than reactant bands, which suggests that the reaction proceeds preferentially at thermal hot spots. In addition, kinetic measurements of the reaction during external heating of the reaction environment yield a considerable rise of the reaction rate with temperature. Despite this significant heating effects, a comparison of SERS spectra recorded after heating the sample by an external heater to spectra recorded after prolonged illumination shows that the reaction is strictly photo-driven. While in both cases the temperature increase is comparable, the dimerization occurs only in the presence of light. Intensity dependent measurements at fixed temperatures confirm this finding. KW - Nanoparticles KW - Plasmonic heating KW - Raman spectroscopy PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475140 DO - https://doi.org/10.1038/s41598-019-38627-2 SN - 2045-2322 VL - 9 IS - 1 SP - 3060, 1 EP - 8 PB - Nature Publishing Group AN - OPUS4-47514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation crosslinking – An efficient method for the oriented immobilization of antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein G KW - Protein A KW - Immunoprecipitation KW - Immunocapture KW - Stabilization KW - Biosensor KW - Biochip KW - Microarray KW - ELISA KW - Immunoassay KW - Immunosensor KW - Crosslinker KW - Nanoparticles KW - Click chemistry KW - Herceptin KW - Trastuzumab PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478797 DO - https://doi.org/10.20944/preprints201904.0205.v1 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinhoff, U. A1 - Hodoroaba, Vasile-Dan T1 - EMPIR Erläuterung der Fördermaßnahme und Beispiele aus der Nanotechnologie N2 - Das EMPIR-Förderprogramm wird kurz erläutert und laufende Projekte aus der Nanotechnologie werden vorgestellt. Der Schwerpunkt liegt auf Standardisierungsprojekten, die gemeinsam mit ISO/TC 229 'Nanotechnologies' und CEN/TC 352 'Nanotechnologies' zu neuen Normen führen sollten. Als Beispiel für laufende Nanotechnologie-Projekte mit Koordination aus Deutschland werden MagNaStand (PTB) und nPSize (BAM) gegeben. T2 - Treffen des Normungsausschusses NA 062-08-17 AA Nanotechnologien CY - KIT, Karlsruhe, Germany DA - 07.03.2019 KW - EMPIR KW - Nanoparticles KW - Reference materials KW - Particle size distribution KW - Traceability KW - Standardisation PY - 2019 AN - OPUS4-47859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Traub, Heike A1 - Drescher, D. A1 - Büchner, T. A1 - Müller, L. A1 - Wanka, Antje A1 - Hösl, S. A1 - Ascher, Lena A1 - Cruz-Alonso, M. A1 - Pisonero, J. A1 - Kneipp, J. A1 - Jakubowski, Norbert T1 - Imaging of biological samples by LA-ICP-MS N2 - In recent years, elemental imaging of biological samples like tissue thin sections using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is gaining more and more importance. Improvements concerning spatial resolution as well as signal-to-background ratio due to low-dispersion sample chambers make LA-ICP-MS also interesting for single cell analysis. To evaluate the interaction of nanoparticles (NPs) with cells LA-ICP-MS was applied for the imaging of individual cells. Our findings show, that NP aggregates can be localized within cellular compartments. The uptake efficiency depends strongly on the physico-chemical properties of the nanostructures (size, chemical composition, surface modification), as well as on the incubation conditions (concentration, time). Moreover, LA-ICP-MS is increasingly becoming an important complementary technique in bioanalysis by using element-tagging strategies to determine biomolecules indirectly. Based on the specific binding between antibodies and their corresponding antigens, proteins and peptides can be detected in tissue or cells using tagged antibodies. As artificial tags metal chelates loaded with lanthanides, polymer-based elemental tags or metal-containing nanoparticles can be used. Thereby LA-ICP-MS is a sensitive detection tool for multiplexed immuno-histochemistry of tissue and cell samples. Our results demonstrate the potential of LA-ICP-MS to investigate the distribution of naturally occurring elements, administered agents as well as biomolecules by using metal-tagged antibodies. T2 - Workshop on tandem LIBS/LA-ICP-MS 2019 CY - Berlin, Germany DA - 18.11.2019 KW - Laser ablation KW - ICP-MS KW - Nanoparticles KW - Imaging PY - 2019 AN - OPUS4-49704 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -