TY - CONF A1 - Gravenkamp, Hauke A1 - Song, Ch. A1 - Nararajan, S. A1 - Talebi, H. A1 - Saputra, A. A1 - Ooi, E. T. T1 - A Semi-analytical Displacement Based Formulation of Arbitrary Polyhedral Elements T2 - 13th US National Congress on Computational Mechanics T2 - 13th US National Congress on Computational Mechanics CY - San Diego (USA) DA - 2015-07-26 PY - 2015 AN - OPUS4-33786 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Gravenkamp, Hauke A1 - Prager, Jens A1 - Birk, Carolin T1 - The SBFEM to simulate the scattering of ultrasonic guided waves interacting with defects in plate structures N2 - In the field of guided waves for non-destructive testing, the interaction of these waves with damages or other discontinuities in a structure is critical. When a guided wave mode travels and hits a defect, it scatters in all directions, converting to other modes and reflecting the existing one. These interactions are captured in scattered far field complex amplitudes. The amplitudes are stored in scattering matrices, which characterise the elastodynamic behaviour of a defect completely. Scattering matrices are also useful to simulate backpropagation from a defect using ray-tracing methods. Simulating these interactions is challenging, and analytical solutions only exist for simple geometries. Still, using general tools like the finite element method results in large, usually costly models. Recently, researchers proposed a method based on a numerical implementation of the Kirchhoff–Helmholtz integral that allows the computation of the scattering matrices using a model containing only the damaged region. However, classical methods to resolve the far field and low-order elements were used, leading to large models yet more efficient than using other techniques. We propose using the SBFEM as an alternative to enhance the computation of the far field scattering. The damaged region is discretised using high-order polyhedral elements, while the far field is constructed using a modified version of the SBFEM. Examples compared to the literature demonstrate the validity of the approach. T2 - Doktorandentreffen CY - Attendorn, Germany DA - 16.10.2023 KW - SBFEM KW - Guided Waves KW - Scattering PY - 2023 AN - OPUS4-59775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -