TY - JOUR A1 - Wiesner, Anja A1 - Krentel, Daniel A1 - Patzelt, Anne-Katrin T1 - InnoBOSK - Neues Netzwerk für besser abgestimmte zivile Sicherheitstechnik JF - Notfallvorsorge – Die Zeitschrift für Bevölkerungsschutz und Katastrophenhilfe N2 - Innovative Lösungen im Bereich der zivilen Sicherheitstechnologie müssen sehr genau auf die Ansprüche der Endanwender*innen abgestimmt werden. Das vom Bundesministerium für Bildung und Forschung (BMBF) geförderte Innovationsforum InnoBOSK der Bundesanstalt für Materialforschung und -prüfung (BAM) ermöglicht erstmalig die Vernetzung von Behörden und Organisationen mit Sicherheitsaufgaben (BOS) mit kleinen und mittleren Unternehmen (KMU). Während verschiedener Workshops, einer zweitägigen Konferenz und auf der digitalen Plattform des Projekts können Anbieter*innen und Endanwender*innen technischer Ausstattung in der zivilen Gefahrenabwehr in Kontakt treten. KW - BOS KW - KMU KW - Netzwerk KW - Security KW - Safety PY - 2021 SN - 0948-7913 VL - 52 IS - 2/2021 SP - 35 EP - 38 PB - Walhalla Fachverlag CY - Regensburg AN - OPUS4-53594 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wille, Frank A1 - Wolff, Dietmar A1 - Droste, Bernhard A1 - Völzke, Holger A1 - Baden, M. T1 - German approach and feedback on experience of transportability of SNF packages after interim storage JF - Packaging, transport, storage & security of radioactive materials (RAMTRANS) N2 - In Germany, the concept of dry interim storage of spent fuel in dual purpose metal casks is implemented, currently for periods of up to 40 years. The casks being used have an approved package design in accordance with the international transport regulations. The license for dry storage is granted on the German Atomic Energy Act with respect to the recently revised 'Guidelines for dry interim storage of irradiated fuel assemblies and heat-generating radioactive waste in casks' by the German Waste management Commission. For transport on public routes between or after long term interim storage periods, it has to be ensured that the transport and storage casks fulfil the specifications of the transport approval or other sufficient properties, which satisfy the proofs for the compliance of the safety objectives at that time. In recent years, the validation period of transport approval certificates for manufactured, loaded and stored packages were discussed among authorities and applicants. A case dependent system of 3, 5 and 10 years was established. There are consequences for the safety cases in the Package Design Safety Report, including evaluation of long term behaviour of components and specific operating procedures of the package. The present research and knowledge concerning the long term behaviour of transport and storage cask components have to be consulted as well as experiences from interim cask storage operations. Challenges in the safety assessment are e.g. the behaviour of aged metal and elastomeric gaskets under IAEA test conditions to ensure that the results of drop tests can be transferred to the compliance of the safety objectives at the time of transport after the interim storage period. Assessment methods for the material compatibility, the behaviour of fuel assemblies and the aging behaviour of shielding parts are issues as well. This paper describes the state of the art technology in Germany, explains recent experience on transport preparation after interim storage and points out arising prospective challenges. KW - Radioactive material storage KW - Dry storage KW - Interim storage KW - Cask design KW - Radioactive material transport KW - Regulation KW - Operating procedures KW - Package KW - Safety KW - Storage KW - Transport KW - Lagerung KW - Spent fuel PY - 2014 DO - https://doi.org/10.1179/1746510914Y.0000000064 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 25 IS - 2 SP - 55 EP - 59 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-33834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk A1 - Bohraus, Stefan A1 - Bäßler, Ralph A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Corrosion behavior of steels for CO2 injection JF - Process safety and environmental protection N2 - The process chain for Carbon Capture and Sequestration (CCS) includes tubing for injection of CO2 into saline aquifers. The compressed CO2 is likely to contain specific impurities; small concentrations of SO2 and NO2 in combination with oxygen and humidity are most harmful. In addition, CO2 saturated brine is supposed to rise in the well when the injection process is interrupted. The material selection has to ensure that neither CO2 nor brine or a combination of both will leak out of the inner tubing. In this comprehensive paper the investigated materials range from low-alloy steels and 13% Cr steels up to high-alloy materials. Electrochemical tests as well as long term exposure tests were performed in CO2, in brine and combination of both; pressure was up to 100 bar, temperature up to 60 °C. Whereas the CO2 stream itself can be handled using low alloy steels, combinations of CO2 and brine require more resistant materials to control the strong tendency to pitting corrosion. The corrosion behavior of heat-treated steels depends on factors such as microstructure and carbon content. For different sections of the injection tube, appropriate materials should be used to guarantee safety and consider cost effectiveness. KW - CCS KW - Injection tubing KW - Corrosion KW - Safety KW - Carbon steel KW - High alloy steel KW - Saline fluid KW - Supercritical CO2 PY - 2014 DO - https://doi.org/10.1016/j.psep.2013.07.002 SN - 0957-5820 SN - 1744-3598 VL - 92 IS - 1 SP - 108 EP - 118 PB - Elsevier CY - Amsterdam AN - OPUS4-28966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -