TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - Gold nanocubes with monodispersed size distribution (SEM SE) T2 - Microscopy Today N2 - Gold nanocubes with a monodispersed size distribution (edge = 55 nm) deposited on a silicon wafer. These tiny uniform cubes were produced as reference nanoparticles in the frame of the European project nPSize - Improved traceability chain of nanoparticle size measurements. SEM Image acquired at 10 kV with an in-lens secondary electron detector. Image colored in ImageJ using LUT “Orange hot.” Published in Microscopy and Microanalysis 25(S2) (2019) 2328. KW - Nanoparticles KW - Nanocubes KW - Electron microscopy KW - Reference materials PY - 2020 DO - https://doi.org/10.1017/S1551929520001157 VL - 28 IS - 4 SP - 12 EP - 12 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - 2020 Microscopy Today Micrograph Awards T2 - Microscopy Today N2 - Gold nanocubes with a monodispersed size distribution (edge = 55 nm) deposited on a silicon wafer. These tiny uniform cubes were produced as reference nanoparticles within the EMPIR project nPSize - Improved traceability chain of nanoparticle size measurements. SEM image acquired at 10 kV with an in-lens secondary electron detector. Image colored in ImageJ using LUT “Orange hot.” Published in Microscopy and Microanalysis 25(S2) (2019) 2328. KW - Nanoparticles KW - Au-nanocubes KW - Reference materials KW - Electron microscopy PY - 2020 DO - https://doi.org/10.1017/S1551929520001339 VL - 28 IS - 5 SP - 14 EP - 15 PB - Cambridge University Press CY - Cambridge, UK AN - OPUS4-51357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan T1 - Delivering Impact - A new ISO standard on the identification of nanoparticles N2 - Nanoparticles (NPs) are tiny – around 1 to 100 billionths of a meter – and can have different chemistries and behaviours than the same material of larger size. This property has led to advances in a wide range of industries, but it can also confer toxicity. Size measurements are the main way NPs are identified but a lack of standardised methods for identifying ones with complex shapes has hindered evaluation of their potential harm. KW - Nanoparticles KW - Standardisation KW - Particle size distribution KW - nPSize KW - ISO 21363 PY - 2024 UR - https://www.euramet.org/casestudies/casestudiesdetails/news/default-c3b26209e8 SP - 1 EP - 2 PB - EURAMET CY - Braunschweig AN - OPUS4-59626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan A1 - Fontanges, Richard T1 - A new deep-learning AI tool for analysing images of complex nanoparticles N2 - A thousand times thinner than a human hair, nanoparticles (NPs) are finding applications in a range of modern products. However, as some can affect human health or the environment, knowing the types present is essential. Electron microscopy is the ‘gold standard’ for NP analysis, allowing identification based on manual size analysis, but a new method was required to analyse these particles quickly, accurately and in a consistent way. KW - Nanoparticles KW - Imaging KW - AI tool KW - Particle size and shape distribution PY - 2024 UR - https://www.euramet.org/casestudies/casestudiesdetails/news/a-new-deep-learning-ai-tool-for-analysing-images-of-complex-nanoparticles SP - 1 EP - 2 PB - EURAMET CY - Braunschweig AN - OPUS4-60095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hodoroaba, Vasile-Dan A1 - Hörenz, Christoph T1 - Improving nanoparticle size measurement accuracy for safety assessment T2 - EURAMET News N2 - Nanomaterials and nanoparticles are finding applications across a wide range of technology sectors, from medicine and food to transportation and construction. In order to assess these new materials for potential risks to health and the environment, they need to be well-characterised. The measurement of constituent nanoparticle size, shape, and size distribution are important factors for the risk evaluation process. EMPIR project Improved traceability chain of nanoparticle size measurements (17NRM04, nPSize) is working to assess a range of traceable nanoparticle measurement approaches, including Scanning Electron Microscopy (also in Transmission Mode), Atomic Force Microscopy and Small Angle X-ray Scattering, and deliver improved calibration methods to users. For the techniques under investigation, physical models of their response to a range of nanoparticle types are developed. Validated reference materials will also be used for an inter-comparison of measurement systems, with an evaluation of the associated measurement uncertainty. With project contributions to standards development work, manufacturers will be better placed to assess the human and environmental risks posed by nanomaterials across a whole range of products. KW - Nanoparticles KW - Particle size distribution KW - Traceability KW - Electron microscopy KW - AFM KW - SAXS PY - 2021 UR - https://www.euramet.org/?L=0&news=40%3A1159 SP - 1 PB - EURAMET e.V. CY - Braunschweig AN - OPUS4-52129 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pauw, Brian Richard A1 - Smales, Glen Jacob A1 - Anker, A. S. A1 - Balazs, D. M. A1 - Beyer, F. L. A1 - Bienert, Ralf A1 - Bouwman, W. G. A1 - Breßler, Ingo A1 - Breternitz, J. A1 - Brok, E. S. A1 - Bryant, G. A1 - Clulow, A. J. A1 - Crater, E. R. A1 - De Geuser, F. A1 - Giudice, A. D. A1 - Deumer, J. A1 - Disch, S. A1 - Dutt, S. A1 - Frank, K. A1 - Fratini, E. A1 - Gilbert, E. P. A1 - Hahn, Marc Benjamin A1 - Hallett, J. A1 - Hohenschutz, Max A1 - Hollamby, M. J. A1 - Huband, S. A1 - Ilavsky, J. A1 - Jochum, J. K. A1 - Juelsholt, M. A1 - Mansel, B. W. A1 - Penttilä, P. A1 - Pittkowski, R. K. A1 - Portale, G. A1 - Pozzo, L. D. A1 - Ricardo de Abreu Furtado Garcia, P. A1 - Rochels, L. A1 - Rosalie, Julian M. A1 - Saloga, P. E. J. A1 - Seibt, S. A1 - Smith, A. J. A1 - Smith, G. N. A1 - Annadurai, V. A1 - Spiering, G. A. A1 - Stawski, Tomasz A1 - Taché, O. A1 - Thünemann, Andreas A1 - Toth, K. A1 - Whitten, A. E. A1 - Wuttke, J. T1 - The human factor: results of a small-angle scattering data analysis Round Robin T2 - arXiv.org N2 - A Round Robin study has been carried out to estimate the impact of the human element in small-angle scattering data analysis. Four corrected datasets were provided to participants ready for analysis. All datasets were measured on samples containing spherical scatterers, with two datasets in dilute dispersions, and two from powders. Most of the 46 participants correctly identified the number of populations in the dilute dispersions, with half of the population mean entries within 1.5 % and half of the population width entries within 40 %, respectively. Due to the added complexity of the structure factor, much fewer people submitted answers on the powder datasets. For those that did, half of the entries for the means and widths were within 44 % and 86 % respectively. This Round Robin experiment highlights several causes for the discrepancies, for which solutions are proposed. KW - Round Robin KW - Sall-angle scattering KW - Nanostructure quantification KW - Nanostructure KW - SAXS KW - MOUSE KW - X-ray scattering KW - Size distribution KW - Nanoparticles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571342 DO - https://doi.org/10.48550/arXiv.2303.03772 SP - 1 EP - 23 PB - Cornell University CY - New York AN - OPUS4-57134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation crosslinking – An efficient method for the oriented immobilization of antibodies T2 - Preprints N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein G KW - Protein A KW - Immunoprecipitation KW - Immunocapture KW - Stabilization KW - Biosensor KW - Biochip KW - Microarray KW - ELISA KW - Immunoassay KW - Immunosensor KW - Crosslinker KW - Nanoparticles KW - Click chemistry KW - Herceptin KW - Trastuzumab PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-478797 DO - https://doi.org/10.20944/preprints201904.0205.v1 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-47879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tchipilov, Teodor A1 - Raysyan, Anna A1 - Weller, Michael G. T1 - Methods for the quantification of particle-bound protein – Application to reagents for lateral-flow immunoassays (LFIA) T2 - Preprints N2 - Protein immobilization for the functionalization of particles is used in various applications, including biosensors, lateral-flow immunoassays (LFIA), bead-based assays, and others. Common methods for the quantification of bound protein are measuring protein in the supernatant before and after coating and calculating the difference. This popular approach has the potential for a significant overestimation of the amount of immobilized protein since layers not directly bound to the surface (soft protein corona) are usually lost during washing and handling. Only the layer directly bound to the surface (hard corona) can be used in subsequent assays. A simplified amino acid analysis method based on acidic hydrolysis and RP-HPLC-FLD of tyrosine and phenylalanine (aromatic amino acid analysis, AAAA) is proposed to directly quantify protein bound to the surface of gold nano- and latex microparticles. The results are compared with indirect methods such as colorimetric protein assays, such as Bradford, bicinchoninic acid (BCA), as well as AAAA of the supernatant. For both particle types, these indirect quantification techniques show a protein overestimation of up to 1700% compared to the direct AAAA measurements. In addition, protein coating on latex particles was performed both passively through adsorption and covalently through EDC/sulfo-NHS chemistry. Our results showed no difference between the immobilization methodologies. This finding suggests that usual protein determination methods are no unambiguous proof of a covalent conjugation on particles or beads. KW - Soft protein corona KW - Hard protein corona KW - Gold particles KW - Nanoparticles KW - Mikroparticles KW - Antibody KW - Bioconjugation KW - Protein quantification KW - Supernatant KW - Sodium chloride method KW - Covalent conjugation KW - Latex particles KW - Lateral flow immunoassays PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545365 DO - https://doi.org/10.20944/preprints202203.0332.v1 SP - 1 EP - 8 PB - MDPI CY - Basel AN - OPUS4-54536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -