TY - CONF A1 - Aristia, Gabriela A1 - Bäßler, Ralph T1 - A Coating System for Corrosion Protection of Carbon Steel as an Alternative for High Alloyed Materials T2 - Proceedings EGC 2022 N2 - Corrosive geothermal brines are a major challenge to geothermal power-plants. For cost reasons, plant designers favorize low alloyed steels, e.g., carbon steel, which are susceptible to uniform and localized corrosion when exposed to geothermal brines having acidic and saline properties. To solve such problem, coatings or inhibitors would be a protective solution as an alternative to the use of high alloyed materials. This study investigated a coating system consisting of polyaniline/silicon dioxide basing on locally available resources. Protection against corrosion of carbon steel is shown by long-term exposure and electrochemical tests of coated carbon steels, performed in an artificial acidic and saline geothermal brine, comparable to real conditions at a site in Indonesia. Therefore, an integrated coating system is presented for corrosion protection, combining the electro-chemical functionality of polyaniline and the physical advantages of silica. T2 - European Geothermal Congress CY - Berlin, Germany DA - 17.10.22 KW - Corrosion KW - Geothermal KW - Coatings KW - Polyaniniline KW - Silicate PY - 2022 SP - 1 EP - 7 CY - Berlin AN - OPUS4-56085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Aristia, G. T1 - A Coating System for Corrosion Protection of Carbon Steel as an Alternative for High Alloyed Materials N2 - The screening of coatings shows that the modification by adding individual pigment was not sufficient to protect carbon steel even during a short-term exposure, indicated by the discoloration after only seven days of exposure. Electrochemical tests indicated that the coating cathodically protects carbon steel or slows down the corrosion reaction. A long-term exposure test confirmed that the PANI/SiO2 modified coating successfully protects the carbon steel in the Sibayak artificial geothermal water at 150 °C for 6 months. T2 - European Geothermal Congress CY - Berlin, Germany DA - 17.10.22 KW - Corrosion KW - Geothermal KW - Coatings KW - Polyaniniline KW - Silicate PY - 2022 AN - OPUS4-56084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Elsayed, H. A1 - Zocca, Andrea A1 - Franchin, G. A1 - Bernardo, E. A1 - Colombo, P. T1 - Hardystonite bioceramics from preceramic polymers JF - Journal of the European Ceramic Society N2 - In this work, we demonstrated that the hardystonite (Ca2ZnSi2O7) bioceramics can be produced withhigh phase purity, starting from different preceramic polymers and suitable fillers (precursors for CaOand ZnO) after heating at 1200◦C in air. Open-celled hardystonite foams were easily prepared from a filler-containing silicone resin using hydrazine as foaming agent. The fabrication of cellular structures using a preceramic polymer and fillers was possible because the polymeric melt allowed for the entrapment of the gases generated by the decomposition of hydrazine, and the simultaneous cross-linking of the preceramic polymer enabled the retention of the foam structure. Samples with a well-developed hierarchical porous structure, with an open porosity ranging from ∼65 to ∼81 vol% and an average cell window size ranging from 150 to 500 µm were produced. The hardystonite components possessed a compressive strength ranging from ∼1.4 to ∼2.1 MPa. KW - Bioceramics KW - Silicate KW - Hardystonite KW - Preceramic Polymers PY - 2016 DO - https://doi.org/10.1016/j.jeurceramsoc.2015.10.034 SN - 0955-2219 VL - 2016/36 SP - 829 EP - 835 PB - Elsevier Ltd. AN - OPUS4-37445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hayakawa, S. A1 - Kanaya, T. A1 - Tsuru, K. A1 - Shirosaki, Y. A1 - Osaka, A. A1 - Fujii, E. A1 - Kawabata, K. A1 - Gasqueres, G. A1 - Bonhomme, C. A1 - Babonneau, F. A1 - Jäger, Christian A1 - Kleebe, H.-J. T1 - Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles JF - Acta biomaterialia N2 - Nanocrystalline hydroxyapatite (HAp) and silicon-containing hydroxyapatite (SiHAp) particles were synthesized by a wet-chemical procedure and their heterogeneous structures involving a disordered phase were analyzed in detail by X-ray diffractometry (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and solid-state magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The effects of heterogeneous structure on in vitro biodegradability and the biologically active Ca(II)- and Si(IV)-releasing property of SiHAp particles were discussed. The 29Si NMR analysis revealed that the Si(IV) was incorporated in the HAp lattice in the form of Q0 (SiO4-4 or HSiO3-4) species, accompanied by the formation of condensed silicate units outside the HAp lattice structure, where the fraction and amount of Q0 species in the HAp lattice depends on the Si content. The 31P and 1H NMR results agreed well with the XRD, TEM and FTIR results. NMR quantitative analysis results were explained by using a core–shell model assuming a simplified hexagonal shape of HAp covered with a disordered layer, where Si(IV) in Q0 was incorporated in the HAp lattice and a disordered phase consisted of hydrated calcium phosphates involving polymeric silicate species and carbonate anions. With the increase in the Si content in the HAp lattice, the in vitro degradation rate of the SiHAps increased, while their crystallite size stayed nearly unchanged. The biologically active Ca(II)- and Si(IV)-releasing ability of the SiHAps was remarkably enhanced at the initial stage of reactions by an increase in the amount of Si(IV) incorporated in the HAp lattice but also by an increase of the amount of polymeric silicate species incorporated in the disordered phase. KW - Silicate KW - Calcium phosphate KW - Hydroxyapatite KW - Degradation KW - Apatite formation PY - 2013 DO - https://doi.org/10.1016/j.actbio.2012.08.024 SN - 1742-7061 VL - 9 IS - 1 SP - 4856 EP - 4867 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-27319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Aydin, Zeynep A1 - Adam, Christian T1 - Crystalline phase analysis and phosphorus availability after thermochemical treatment of sewage sludge ash with sodium and potassium sulfates for fertilizer production JF - Journal of Material Cycles and Waste Management N2 - Phosphorus rich sewage sludge ash is a promising source to produce phosphorus recycling fertilizer. However, the low plant availability of phosphorus in these ashes makes a treatment necessary. A thermochemical treatment (800–1000 °C) with alkali additives transforms poorly plant available phosphorus phases to highly plant available calcium alkali Phosphates (Ca,Mg)(Na,K)PO4. In this study, we investigate the use of K2SO4 as additive to produce a phosphorus potassium fertilizer in laboratory-scale experiments (crucible). Pure K2SO4 is not suitable as high reaction temperatures are required due to the high melting point of K2SO4. To overcome this barrier, we carried out series of experiments with mixtures of K2SO4 and Na2SO4 resulting in a lower economically feasible reaction temperature (900–1000 °C). In this way, the produced phosphorus potassium fertilizers (8.4 wt.% K, 7.6 wt.% P) was highly plant available for phosphorus indicated by complete extractable phosphorus in neutral ammonium citrate solution. The added potassium is, in contrast to sodium, preferably incorporated into silicates instead of phosphorus phases. Thus, the highly extractable phase (Ca,Mg)(Na,K)PO4 in the thermochemical products contain less potassium than expected. This preferred incorporation is confirmed by a pilot-scale trial (rotary kiln) and thermodynamic calculation. KW - Phosphorus recovery KW - Recycling fertilizer KW - Calcium alkali phosphate KW - Silicate PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536276 DO - https://doi.org/10.1007/s10163-021-01288-3 SN - 1611-8227 IS - 23 SP - 2242 EP - 2254 PB - Springer AN - OPUS4-53627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -