TY - CONF A1 - Maiwald, Michael T1 - Compact NMR Spectroscopy: A Versatile Tool for Automated Continuous-Flow Production of Chemicals and Pharmaceuticals N2 - Chemical companies must find new paths to successfully survive in a changing environment. The potential of digital technologies belongs to these. Flexible and modular chemical plants can produce various high-quality products using multi-purpose equipment with short down-times between campaigns and reduce time to market for new products. Intensified continuous production plants allow for difficult to produce compounds. Therefore, fully automated “chemical” process control along with real-time quality control are prerequisites to such concepts and thus should be based on “chemical” information. The advances of a fully automated NMR sensor were exploited, using a given pharmaceutical lithiation reaction as an example process within a modular pilot plant. A commercially available benchtop NMR spectrometer was integrated to the full requirements of an automated chemical production environment such as , e.g., explosion safety, field communication, and robust evaluation of sensor data. It was thereof used for direct loop advanced process control and real-time optimization of the process. NMR appeared as preeminent online analytical tool and allowed using a modular data analysis tool, which even served as reliable reference method for further PAT applications. Recently, AI procedures have also been successfully used for NMR data evaluation. In order to overcome the typical limitation of too small data sets from process developments, a new method was tested, which allows a physically motivated multiplication of the available reference data together with context information in order to obtain a sufficiently large data set for the training of machine learning algorithms. In future, such fully integrated and intelligently interconnecting “smart” systems and processes can speed up the high-quality production of specialty chemicals and pharmaceuticals. T2 - Compact NMR: Perspectives for (Bio)process Monitoring CY - Online meeting DA - 14.10.2020 KW - Process Industry KW - Real-time Process Monitoring KW - NMR Spectroscopy KW - Indirect Hard Modelling KW - Modular Production PY - 2020 AN - OPUS4-51430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Peters, Claudia A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Gräßer, Patrick A1 - Wander, Lukas T1 - How far does the light shine? A check-up of quantitative high and low field NMR spectroscopy N2 - The Royal Society of Chemistry NMR Discussion Group and Molecular Spectroscopy Group would like to invite you to the 2017 Spring Meeting, which will be held at GlaxoSmithKline (GSK), Stevenage. The theme for the meeting is “Low level detection and quantification by NMR” and different NMR technologies, including solution state NMR, solid state NMR and benchtop/low field NMR will be discussed. The presentations will cover a range of NMR related disciplines, including conventional low level detection and quantification, the use of cryoprobes, quantification of polymorphism using ssNMR and also methods for spectral simplification. Recent developments and applications of hyperpolarisation techniques, within both solution state and solid state NMR, will be presented in conjunction with the effect these sensitivity enhancements have with respect to quantification and limits of detection. T2 - NMR Discussion Group and Molecular Spectroscopy Group Spring Meeting: "Low Level Detection and Quantification by NMR Spectroscopy" CY - Stevenage, UK DA - 29.03.2017 KW - Online NMR Spectroscopy KW - Quantitative NMR Spectroscopy KW - qNMR KW - Indirect Hard Modeling KW - Limit of Detection KW - NMR Spectroscopy KW - Metrology PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395936 AN - OPUS4-39593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Wander, Lukas A1 - Paul, Andrea A1 - Maiwald, Michael T1 - Already Producing or Still Calibrating? – Advances of Model-Based Automation for Online NMR Spectroscopy N2 - The transition from the current automation landscape to next generation automation concepts for the process industry has already begun. Smart functions of sensors simplify their use and enable plug-and-play integration, even though they may appear to be more complex at first sight. Monitoring specific information (i.e., “chemical” such as physico-chemical properties, chemical reactions, etc.) is the key to “chemical” process control. Here we introduce our smart online NMR sensor module provided in an explosion proof housing as example. Due to NMR spectroscopy as an “absolute comparison method”, independent of the matrix, it runs with very short set-up times in combination with “modular” spectral models. These are based on pure component NMR spectra without the need for tedious calibrations runs. We present approaches from statistical, (i.e., Partial Least Squares Regression) to physically motivated models (i.e., Indirect Hard Modelling). Based on concentration measurements of reagents and products by the NMR analyser a continuous production and direct loop process control were successfully realized for several validation runs in a modular industrial pilot plant and compared to conventional analytical methods (HPLC, near infrared spectroscopy). The NMR analyser was developed for an intensified industrial process funded by the EU’s Horizon 2020 research and innovation programme (“Integrated CONtrol and SENsing”, www.consens-spire.eu). T2 - 2nd Reaction Monitoring Symposium CY - Bath, UK DA - 28.01.2019 KW - Process Analytical Technology KW - NMR Spectroscopy KW - Modular Production PY - 2019 AN - OPUS4-47309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -