TY - CONF A1 - Schartel, Bernhard ED - D'Amore, A. ED - Acierno, Domenico ED - Grassia, L. T1 - Nanotechnology finding its way into flame retardancy T2 - Times of polymers (TOP) and composites 2014 - 7th international conference on times of polymers (TOP) and composites (Proceedings) N2 - Nanotechnology is one of the key technologies of the 21st century. The exploitation of 'new' effects that arise from materials structured on the nano-scale has also been proposed successfully for flame retardancy of polymers since the end of the 90s. Of all of the approaches these include, at this time the use of nanocomposites offers the best potential for industrial application, also some other ideas are sketched, such as using electrospun nanofibers mats or layer-by-layer deposits as protection coatings, as well as sub-micrometer multilayer coatings as effective IR-mirrors. The general phenomena, inducing a flow limit in the pyrolysing melt and changing the fire residue, are identified in nanocomposites. Key experiments are performed such as quasi online investigation of the protection layer formation to understand what is going on in detail. The flame retardancy mechanisms are discussed and their impact on fire behaviour quantified. With the latter, the presentation pushes forward the state of the art. For instance, the heat shielding is experimentally quantified for a layered silicate epoxy resin nanocomposite proving that it is the only import mechanism controlling the reduction in peak heat release rate in the investigated system for different irradiations. The flame retardancy performance is assessed comprehensively illuminating not only the strengths but also the weak points of the concepts. Guidelines for materials development are deduced and discussed. Apart from inorganic fillers (layered silicate, boehmite, etc.) not only carbon nanoobjects such as multiwall carbon nanotubes, multilayer graphene and graphene are investigated, but also nanoparticles that are more reactive and harbor the potential for more beneficial interactions with the polymer matrix. T2 - Times of polymers (TOP) and composites 2014 - 7th international conference on times of polymers (TOP) and composites CY - Ischia, Italy DA - 2014-06-22 KW - Nanotechnology KW - Flame retardancy KW - Nanocomposites KW - Fire behavior KW - Layered silicate KW - Graphene KW - Nanotubes KW - Nanofibers KW - Flammability KW - Cone calorimeter PY - 2014 SN - 978-0-7354-1233-0 DO - https://doi.org/10.1063/1.4876766 SN - 0094-243X N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 1599 SP - 14 EP - 17 PB - AIP Publishing CY - Melville, New York AN - OPUS4-30994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schartel, Bernhard ED - Morgan, A. ED - Wilkie, C. T1 - Considerations regarding specific impacts of the principal fire retardancy mechanisms in nanocomposites T2 - Flame Retardant Polymer Nanocomposites KW - Nanocomposites KW - Fire retardancy KW - Layered silicate KW - Cone calorimeter KW - Multiwall carbon nanotubes KW - LOI KW - UL 94 PY - 2007 SN - 978-0-471-73426-0 IS - Kap. 5 SP - 107 EP - 129 PB - John Wiley & Sons, Ltd. CY - New York AN - OPUS4-14844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sturm, Heinz A1 - Schartel, Bernhard A1 - Weiß, André A1 - Braun, Ulrike T1 - SEM/EDX: Advanced investigation of structured fire residues and residue formation JF - Polymer testing N2 - Heterogeneous, gradual or structured morphology of fire residues plays an important role in fire retardancy of polymers. A scanning electron microscope with an attached energy dispersive X-ray spectrometer (SEM/EDX) is highlighted as a powerful tool for the advanced characterization of such complex fire residues, since it offers high resolution in combination with both good depth of field and analysis of chemical composition. Two examples are presented: First, comprehensive SEM/EDX investigation on a complex structured fire residue of glass fibre reinforced polyamide 6,6 (PA 66-GF) flame retarded by diethylaluminium phosphinate, melamine polyphosphate and some zinc borate. A multilayered surface crust (thickness ~ 24 µm) covers a rather hollow area stabilized by GF glued together. The resulting efficient thermal insulation results in self-extinguishing before pyrolysis is completed, even under forced-flaming combustion. Second, sophisticated, quasi online SEM/EDX imaging of the formation of residual protection layer in layered silicate epoxy resin nanocomposites (LSEC). Burning specimens were quenched in liquid nitrogen for subsequent analyses. Different zones were distinguished in the condensed phase characterized by distinct processes such as melting and ablation of organic material, as well as agglomeration, depletion, exfoliation and reorientation of the LS. KW - Fire residue KW - SEM/EDX KW - Fire retardancy KW - PA 66 KW - Layered silicate KW - Diethylaluminium phosphinate PY - 2012 DO - https://doi.org/10.1016/j.polymertesting.2012.03.005 SN - 0142-9418 VL - 31 IS - 5 SP - 606 EP - 619 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-25802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Wu, Guang Mei T1 - Quantitative Assessment and Optimization of Flame Retardancy by the Shielding Effect in Epoxy Nanocomposites N2 - Diese Arbeit trägt zum halogenfreien Flammschutz von Epoxidharzen durch Nanokomposite mit Phosphonium modifiziertem Schichtsilikat bei. Der Flammschutz resultiert aus der während der Pyrolyse entstehenden inorganisch-organischen Schutzschicht. Diese Brandrückstandsschicht wirkt als Hitzeschild für das darunterliegende Material. Ziel dieser Arbeit ist die experimentelle und quantitative Beschreibung dieses Effekts und die Optimierung der Flammschutzwirkung. Die während der erzwungenen Verbrennung im Cone Calorimeter auftretenden Wärmeflüsse und Materialoberflächentemperaturen wurden in selbst konzipierten Experimenten bestimmt. Der durch die Schutzschicht zurückgestrahlte Wärmefluß und die daraus resultierte Reduktion des in der Pyrolysezone effektiv in Brennstofffreisetzung umgesetzten Wärmeflusses wurden erfolgreich quantifiziert. Mit diesem effektiven Wärmefluß nahmen wichtige Brandeigenschaften wie die Wärmefreisetzungsrate ab. Zur Optimierung der Schutzschicht wurde drei Ansätze verfolgt: Variation der organischen Modifizierung, verbesserte Dispersion durch den Einsatz von interkaliertem Triphenylphosphat und die Optimierung der Morphologie der Schutzschicht durch die Kombination von Schichtsilikat mit niedrig schmelzenden Gläsern. Durch den Einsatz verschiedener organischer Kationen lässt sich die Verteilung der Nanopartikel, die Struktur der Schutzschicht und damit die Flammschutzwirkung optimieren. Obwohl die Interkalation von Triphenylphosphat eine deutliche Aufweitung der Schichtabstände im Schichtsilikat bewirkt, zeigen die entsprechenden Nanokomposite keine verbesserte Verteilung der Partikel, keine homogenere Schutzschicht und keine Erhöhung der Flammschutzwirkung im Vergleich zu analogen Mischsystemen, in denen additiv Triphenylphosphat zugegeben wurde. Die Kombination von organisch modifiziertem Schichtsilikat und niedrig schmelzenden Gläsern zeigen in den meisten der untersuchten Systeme antagonistische Effekte. Nur in wenigen Kombinationen ist, die Superposition bzw. sogar eine Synergie zwischen den Flammschutzeffekten beider Zusätze zu beobachten. Die erstmalige experimentelle Quantifizierung des Hitzeschildes in Polymernanokompositen ist ein wertvoller Beitrag für ein grundlegendes Verständnis der Flammschutzmechanismen in Nanokompositen. Die Abhängigkeit der Flammschutzwirkung von der Struktur der Schutzschicht wurde nachgewiesen. Zur Optimierung der Schutzschichtstruktur und damit des Flammschutzes wurden drei Ansätze vorgeschlagen. N2 - The motivation of this study was to pursue effective eco-friendly and economical flame retarded polymer materials. With wide-ranging advantages such as improved fire and physical properties, halogen-free and relatively low cost, layered silicate / epoxy nanocomposite (EP_LS) was targeted for high efficiency of flame retardancy. One main goal of this study was to increase the understanding of the flame retardancy phenomenon in EP_LS by assessing the shielding effect of the protection layer experimentally and quantitatively. Another main goal of this study was to optimize the flame retardancy by the shielding effect in EP_LS. T3 - BAM Dissertationsreihe - 77 KW - Flame retardancy KW - Shielding effect KW - Nanocomposite KW - Layered silicate KW - Low-melting glass PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-816 SN - 978-3-9814281-7-9 SN - 1613-4249 VL - 77 SP - 1 EP - 125 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-81 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Guang Mei A1 - Schartel, Bernhard A1 - Yu, D. A1 - Kleemeier, M. A1 - Hartwig, A. T1 - Synergistic fire retardancy in layered-silicate nanocomposite combined with low-melting phenysiloxane glass JF - Journal of fire sciences N2 - Tetraphenyl phosphonium-modified layered silicate (LS) and low-melting phenylsiloxane glass (G) are combined for more efficient halogen-free flame retardancy in epoxy resin (EP_LSG). Particularly, the peak heat release rate (PHRR) is decreased (by up to 60%), but levels off at additive concentrations ≥10 wt%. The performance of EP_LSG is compared to EP_LS and EP_G assuming an absolute and a relative flame retardancy effect, respectively, and based on the same amount of each filler and, alternatively, with EP_G containing the same overall amount of filler. EP_LSG behaves close to superposition but shows a strong tendency toward synergism due to a superior structural integrity of the fire residues. Apart from LS, adding G in particular is a promising approach when its content is ≤5 wt%, as is LSG for ≥10 wt%. KW - Low-melting glass KW - Layered silicate KW - Flame retardancy KW - Nanocomposites KW - Epoxy resin PY - 2012 DO - https://doi.org/10.1177/0734904111422417 SN - 0734-9041 SN - 1530-8049 VL - 30 IS - 1 SP - 69 EP - 87 PB - Sage CY - London AN - OPUS4-25359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -