TY - CONF A1 - Kotschate, Daniel A1 - Gaal, Mate A1 - Kersten, Holger A1 - Hansen, Luka T1 - Plasma induced generation of acoustic waves N2 - Due to the multi-physical appearance of gas discharges the possibilities of interaction with their surrounding environment are very wide. Some of the most common applications are surface or material modification, light sources and electric propulsion. Since atmosphere pressure plasma generate a huge amount of thermal energy caused by collisions in the sheath, this temperature alternation is also able to produce acoustic waves in the ambient gas volume (as lightning and thunder). The plasma-chemical interaction provides the most significant Impact to the generated heat and electro-hydrodynamic force, detectable by acoustic sensors. This contribution gives an overview of experimental acoustic analysis of diffuse coplanar surface dielectric barrier discharges and provides a basic physical straight-forward model. In addition to the characterization, possible applications (e.g. plasma acoustic loudspeaker or transducer for air-coupled ultrasonic testing) concerning these discharge types are presented. T2 - DPG Frühjahrstagung (SMuK) CY - Munich, Germany DA - 17.03.2019 KW - Gas discharges KW - Atmospheric pressure plasma KW - Diffuse dielectric barrier discharges PY - 2019 AN - OPUS4-47595 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -