TY - GEN A1 - Heinrich, Sebastian A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Klemm, E. T1 - Durchführung heterogen katalysierter Selektivoxidationen im Explosionsbereich unter Einsatz von Mikrostrukturreaktoren T2 - 10. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit T2 - 10. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Deutschland DA - 2010-11-04 KW - Mikroreaktor KW - Oxidation KW - Explosion PY - 2010 SN - 978-3-89746-119-2 IS - P-03 SP - 1 EP - 6 CY - Frankfurt/M. AN - OPUS4-22359 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lange, T. A1 - Heinrich, Sebastian A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Klemm, E. T1 - Partial oxidation of o-xylene to phthalic anhydride inside of the explosion regime using a micro structured reactor T2 - 2012 AIChE Annual meeting T2 - 2012 AIChE Annual meeting CY - Pittsburgh, PA, USA DA - 2012-10-28 KW - O-xylene oxidation KW - V2O5/TiO2 catalyst KW - Micro structured reactor KW - Explosion regime KW - Micro reactor KW - Explosion KW - Phthalic anhydride KW - Partial oxidation PY - 2013 SN - 9781622767380 SP - 90 EP - 93 AN - OPUS4-28706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Shenton, M. T1 - Identifiying hazardous conditions for compression heat igniting the chemically unstable gas Tetrafluorethylene in industrial scale N2 - Tetrafluoroethylene (TFE) is an industrial scale starting material e.g. for polymer production (PTFE, FEP). When ignited the chemically unstable TFE is capable to decompose in an explosive way. Explosion propagation through pipe systems of production plants have led to damage and fatalities within the last 7 decades. Incident analyses identified compression heat a relevant source of ignition. Chemical plants consist of pipes, vessels, separating valves, strainers and other components. Before restarting the process after maintenance work different parts of the plant components could be filled with TFE, Nitrogen or Air at different initial pressures ranging from vacuum or atmospheric to TFE at operating pressure. Valve opening procedures may cause a temperature increase in the gas phase. Compression takes place at polytropic conditions. Heat losses cannot be neglected. Therefore the temperature development in the gas depends upon the surface-to-volume-ratio of the enclosure, geometrical influences, the state of gas flow, how fast the valve opens and the heat capacity of the gas being compressed. In the present work initial test results from a 2.5” pipe will be compared with existing 1.1” pipe data. Geometrical effects will be briefly discussed as well as some first results concerning the influence of orifices are reported. Furthermore a method allowing for the identification of hazardous initial conditions is discussed. T2 - 16th International Symposium on Loss Prevention and Safety Promotions in the Process Industires and accompanying exhibition CY - Delft, The Netherlands DA - 16.06.2019 KW - Tetrafluorethylene KW - Explosion KW - Safety PY - 2019 AN - OPUS4-48324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Heinrich, Sebastian A1 - Edeling, Florian A1 - Hieronymus, Hartmut A1 - Lange, T. A1 - Klemm, E. ED - Pierucci, S. ED - Klemes, J.J. ED - De Rademaeker, E. ED - Fabiano, B. ED - Buratti, S.S. T1 - Explosion initiation, propagation, and suppression inside a micro structured reactor T2 - Proceedings of the 14th EFCE symposium on loss prevention and safety promotion in the process industries N2 - The present contribution reports on specific aspects of safety engineering in heterogeneously catalysed oxidation reactions. Results for ethene-oxygen-mixtures in a continuous-flow micro reactor are reported related to the safety issues of the ethylene oxide process. Initial pressure is ranging from below 1 bar up to 10 bar at initial temperatures ranging from room temperature up to 673 K. Micro structured reactors offer an extended range of operating conditions. The key issue to be discussed in the present contribution is how to safely operate a micro reactor at conditions in conventional devices to be characterised as inside the explosion region. Within certain limits suppression of explosion inside a micro reactor can be achieved. This holds true for chain reactions as well as runaway reactions. Nevertheless it is not possible to safely operate micro structured reactors at any condition. Therefore, explosion propagation through a Micro structured reactor and initiation of gas phase explosions by hot spots inside the reactor were investigated. The investigation methods applied are subject to actual standardization. T2 - 14th International symposium on loss prevention and safety promotion in the process industries CY - Florence, Italy DA - 12.05.2013 KW - Micro reactor KW - Explosion KW - Safety PY - 2013 SN - 978-88-95608-22-8 DO - https://doi.org/10.3303/CET1331101 SN - 1974-9791 N1 - Serientitel: Chemical engineering transactions – Series title: Chemical engineering transactions IS - 31 SP - 601 EP - 606 PB - AIDIC, Associazione Italiana di Ingegneria Chimica CY - Milano AN - OPUS4-28583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Heinrich, Sebastian A1 - Edeling, Florian A1 - Lange, T. A1 - Klemm, E. ED - Beyer, M. ED - Stolz, T. T1 - Zündung, Ausbreitung und Unterdrückung von Explosionen in einem Mikroreaktor T2 - 13. BAM/PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik N2 - Der vorliegende Beitrag behandelt spezifische Aspekte der Sicherheitstechnik bei heterogen katalysierten Oxidationsreaktionen. Ergebnisse von Explosionsuntersuchungen an Ethen-Sauerstoffgemischen in einem kontinuierlich betriebenen Mikroreaktor, die beispielsweise für den Ethylenoxidprozess relevant sind, werden vorgestellt. Der Anfangsdruck der untersuchten Eduktgemische lag zwischen 1000 hPa und 10000 hPa bei Anfangstemperaturen zwischen Umgebungstemperatur und einer Temperatur bis zu 673 K. Mikrostrukturierte Reaktoren bieten einen erweiterten Bereich von Betriebsbedingungen. Die Untersuchungen zielen auf den sicheren Betrieb eines Mikroreaktors bei Bedingungen, die bei konventionellen Reaktoren als innerhalb des Explosionsbereichs eingestuft werden, ab. In bestimmten Grenzen kann eine Unterdrückung von Explosionen in einem Mikroreaktor erreicht werden. Es ist jedoch nicht möglich, einen Mikroreaktor unter allen Bedingungen sicher zu betreiben. Aus diesen Gründen wurde die Explosionsausbreitung durch einen mikrostrukturierten Reaktor hindurch und die Zündung einer Gasphasenexplosion durch Hot-Spots in dem Reaktor untersucht. Die angewandten Untersuchungsmethoden sind Gegenstand aktueller Normungsaktivitäten. T2 - 13. BAM-PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik CY - Braunschweig, Germany DA - 18.06.2013 KW - Micro Reactor KW - Explosion KW - Safety PY - 2013 SN - 978-3-95606-062-5 DO - https://doi.org/10.7795/210.20130910K SN - 1868-5838 SP - 90 EP - 98 AN - OPUS4-29849 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebner, Christian A1 - Shenton, M. T1 - Identifying hazardous conditions for compression heat igniting the chemically unstable gas Tetrafluoroetyhlene in industrial scale JF - Chemical engineering transactions N2 - Tetrafluoroethylene (TFE) is an industrial scale starting material e.g. for polymer production (PTFE, FEP). When ignited the chemically unstable TFE is capable of decomposing in an explosive way. Explosion propagation through pipe systems of production plants have led to damage and fatalities within the last seven decades. Incident analyses identified compression heat a relevant source of ignition. Chemical plants consist of pipes, vessels, separating valves, strainers and other components. Before restarting the process after maintenance work, different parts of the plant components could be filled with TFE, nitrogen or air at different initial pressures ranging from vacuum or atmospheric to TFE at operating pressure. Valve opening procedures may cause a temperature increase in the gas phase. Compression takes place at polytropic conditions. Heat losses cannot be neglected. The temperature development in the gas depends upon the surface to volume ratio of the enclosure, geometrical influences, the state of gas flow, how fast the valve opens, and the heat capacity of the gas being compressed. Laboratory scale tests (Meyer, 2009) revealed ignition of TFE/air due to compression heat. Tests in pipes of 28 mm inner diameter, i.e. already industrial scale, were performed by (Kluge et. al., 2016). In the present contribution initial test results from a 63 mm pipe will be compared with existing 28 mm pipe data. A description of the experimental setup as well as an explanation of the hazard diagram will be given. Furthermore, a method allowing for the identification of hazardous conditions will be discussed. T2 - Konferenz LossPrevention 20149 CY - Delft, Netherlands DA - 16.06.2019 KW - Tetrafluoroethylene KW - Explosion KW - Safety PY - 2019 UR - https://www.aidic.it/cet/19/77/000.html SN - 978-88-95608-74-7 DO - https://doi.org/10.3303/CET1977026 SN - 2283-9216 VL - 77 SP - 151 EP - 156 PB - AIDIC - Associazione Italiana di Ingegneria Chimica CY - Milano AN - OPUS4-49564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roduner, E. A1 - Kaim, W. A1 - Sarkar, B. A1 - Urlacher, V.B. A1 - Pleiss, J. A1 - Gläser, R. A1 - Einicke, W.-D. A1 - Sprenger, G.A. A1 - Beifuß, U. A1 - Klemm, E. A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Hsu, S.-F. A1 - Plietker, B. A1 - Laschat, s. T1 - Selective catalytic oxidation of C-H bonds with molecular oxygen JF - ChemCatChem N2 - Although catalytic reductions, cross-couplings, metathesis, and oxidation of C=C double bonds are well established, the corresponding catalytic hydroxylations of C–H bonds in alkanes, arenes, or benzylic (allylic) positions, particularly with O2, the cheapest, 'greenest', and most abundant oxidant, are severely lacking. Certainly, some promising examples in homogenous and heterogenous catalysis exist, as well as enzymes that can perform catalytic aerobic oxidations on various substrates, but these have never achieved an industrial-scale, owing to a low space-time-yield and poor stability. This review illustrates recent advances in aerobic oxidation catalysis by discussing selected examples, and aims to stimulate further exciting work in this area. Theoretical work on catalyst precursors, resting states, and elementary steps, as well as model reactions complemented by spectroscopic studies provide detailed insight into the molecular mechanisms of oxidation catalyses and pave the way for preparative applications. However, O2 also poses a safety hazard, especially when used for large scale reactions, therefore sophisticated methodologies have been developed to minimize these risks and to allow convenient transfer onto industrial scale. KW - Coupling reactions KW - Feedstocks KW - Hydroxylation KW - Molecular oxygen KW - Oxidation KW - Catalytic oxidation KW - Micro reactor KW - Explosion KW - Safety PY - 2013 DO - https://doi.org/10.1002/cctc.201200266 SN - 1867-3880 VL - 5 IS - 1 SP - 82 EP - 112 PB - Wiley-VCH CY - Weinheim AN - OPUS4-27637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -