TY - THES A1 - Askar, Enis T1 - Experimentelle Bestimmung und Berechnung sicherheitstechnischer Kenngrößen ethylenoxidhaltiger Gasphasen N2 - Ethylenoxid ist vor allem aufgrund seiner hohen Reaktivität ein wichtiges organisches Zwischenprodukt der chemischen Industrie und in vielen Fällen bisher unersetzbar. Da es auch in Abwesenheit jeglicher Reaktionspartner explosionsartig zerfallen kann, ist der Umgang mit ethylenoxidhaltigen Gemischen jedoch nur mit besonderen sicherheitstechnischen Maßnahmen möglich. Für die sicherheitstechnische Beurteilung der Lagerung, des Transports sowie der Verarbeitung von ethylenoxidhaltigen Gasgemischen und die Ableitung angemessener sicherheitstechnischer Maßnahmen ist die Kenntnis der sicherheitstechnischen Eigenschaften von ethylenoxidhaltigen Gasgemischen unbedingt erforderlich. In der Vergangenheit wurden sicherheitstechnische Kenngrößen von Ethylenoxid immer wieder vereinzelt nur für bestimmte Prozessbedingungen und zum Teil mit unterschiedlichen Methoden durchgeführt. Insbesondere beschränken sich die bisher veröffentlichten Untersuchungen fast ausschließlich auf atmosphärische und nur leicht erhöhte Drücke, obwohl höhere Ausgangsdrücke für industrielle Prozesse mit Ethylenoxid durchaus relevant sind. Die Anwendbarkeit vorhandener Berechnungsmodelle, durch die der experimentelle Aufwand bei der Bestimmung sicherheitstechnischer Kenngrößen erheblich reduziert werden könnte, wurde bei chemisch instabilen Gasen, wie Ethylenoxid bisher kaum untersucht. Für eine umfangreichere Validierung der Berechnungsmethoden ist die in der Literatur verfügbare Datenbasis an sicherheitstechnischen Kenngrößen von Ethylenoxid nicht ausreichend. In dieser Arbeit werden sicherheitstechnische Kenngrößen ethylenoxidhaltiger Gasgemische systematisch in Abhängigkeit verschiedener Einflussgrößen, mit einheitlichen Bestimmungsmethoden und auch bei höheren Betriebsbedingungen untersucht und Methoden für die Berechnung der in dieser Arbeit ermittelten Kenngrößen entwickelt bzw. weiterentwickelt. Durch die Bestimmung der Explosionsbereiche ternärer Gemische aus Ethylenoxid, einem Inertgas und Luft und der Stabilitätsgrenzkonzentrationen binärer Gemische aus Ethylenoxid und einem Inertgas wird zunächst ausführlich untersucht, in welchen Stoffmengenverhältnissen ethylenoxidhaltige Gemische überhaupt explosionsfähig sind. Die Kenntnis dieser Kenngrößen ist zur Ableitung sogenannter primärer Explosionsschutzmaßnahmen zur Vermeidung explosionsfähiger Gemische, z.B. durch Inertisierung, erforderlich. Insbesondere werden die Einflüsse von Ausgangstemperatur und Ausgangsdruck auf die Explosionsgrenzen systematisch untersucht. Dabei werden vor allem auch die praxisrelevanten höheren Betriebsdrücke berücksichtigt. Gerade für Explosionsgrenzen im Bereich der Zerfallsreaktion kann ein enormer Einfluss des Drucks festgestellt werden. Für die Berechnung der Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid wird das halbempirische Modell der konstanten Flammentemperaturen weiterentwickelt. Die Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid werden unter der modifizierten Annahme, dass das Profil der berechneten Flammentemperaturen entlang der Explosionsgrenzkurve für verschiedene Systeme unabhängig von Ausgangsdruck, Ausgangstemperatur und Art des Inertgases konstant ist, rechnerisch bestimmt. Dazu wird ein spezielles Rechenprogramm entwickelt, dass die Berechnung der Explosionsgrenzen für ein beliebiges Gemisch aus Brenngas, Inertgas und Luft bei beliebiger Ausgangstemperatur und beliebigem Ausgangsdruck ermöglicht, wenn der gesamte Explosionsbereich für ein einzelnes System aus Brenngas, Inertgas und Luft bekannt ist. Die Explosionsgrenzen und Stabilitätsgrenzkonzentrationen von Ethylenoxid können mit diesem Rechenprogramm mit einer durchschnittlichen Abweichung von weniger als 2 Mol-% berechnet werden. Durch die Bestimmung von Zündtemperaturen für den Zerfall von Ethylenoxid und von definierten Gemischen aus Ethylenoxid und einem Inertgas wird schließlich untersucht, bei welchen Temperaturen ein explosionsartiger Zerfall von Ethylenoxid durch eine heiße Oberfläche in einem geschlossenen System initiiert werden kann. Die Abhängigkeit vom Druck, vom Behältervolumen und vom Stoffmengenanteil an EO werden bei den Untersuchungen berücksichtigt. Anders als die nach standardisierten Verfahren bestimmte Zündtemperatur von Gasen, die in offenen Systemen und ausschließlich für Gemische mit Luft ermittelt wird, kann durch die Bestimmung der bisher nicht standardisierten Zündtemperatur für den Zerfall festgestellt werden, bei welcher Oberflächentemperatur es innerhalb eines geschlossenen Systems bei höheren Drücken und in Abwesenheit von Luft zu einem explosionsartigen Zerfall von chemisch instabilen Gasen kommen kann. Es zeigt sich, dass die Zündtemperatur des Zerfalls von Ethylenoxid bei höheren Drücken auch niedriger sein kann als die nach den Standardverfahren für offene Systeme bestimmte Zündtemperatur von Ethylenoxid. Außerdem zeigt sich, dass der Einfluss von Inertgasen auf die Zündtemperatur für den Zerfall von Ethylenoxid stark von der Art des Inertgases abhängig ist. Die Zündtemperaturen für den Zerfall von Ethylenoxid werden mit verschiedenen Modellen mit unterschiedlichem Grad an Vereinfachungen berechnet. Dabei wird rechnerisch die Wandtemperatur bestimmt, bei der es zu einem thermischen Durchgehen der Reaktion („Runaway“) kommt. Es zeigt sich, dass hinsichtlich der Genauigkeit und des Rechenaufwands eine transiente 0-dimensionale numerische Simulation besonders gut für die rechnerische Bestimmung der Zündtemperatur für den Zerfall von Ethylenoxid in Abhängigkeit des Drucks und des Behältervolumens geeignet ist. Temperaturgradienten innerhalb des Behälters werden bei diesem Modell vernachlässigt und die Wärmeabfuhr wird ausschließlich durch die Temperaturdifferenz zwischen Wand und Reaktionsmasse, die Wärmeaustauschfläche und den inneren Wärmeübergangskoeffizienten bestimmt, der nach einem empirischen Ansatz für den Wärmeübergang an senkrechten Platten bei natürlicher Konvektion berechnet wird. Die Berücksichtigung von lokalen Abhängigkeiten innerhalb des Behälters durch ein 2-dimensionales Modell bringt trotz höheren Rechenaufwands keine weiteren ersichtlichen Vorteile. T3 - BAM Dissertationsreihe - 80 KW - Explosion KW - Entzündung KW - Stabilitätsgrenze KW - Chemisch instabile Gase KW - Zerfall PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-789 SN - 978-3-9814634-2-2 SN - 1613-4249 VL - 80 SP - 1 EP - 148 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-78 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Auersch, Lutz T1 - Vibrations of soil and foundation due to railway, blast and impact loading JF - Journal of Dynamics and Vibroacoustics N2 - The vibrations of soil and foundations are demonstrated for different types of loading. Train-induced ground vibrations are studied in a measurement campaign where a test train has run with regularly varied speeds. The measured train-induced soil vibration at 2 to 100 m distance from the track is compared with the wave propagation due to hammer excitation and with the theoretical wave field. The strong influence of the soil and the train speed on the amplitudes and frequencies of the vibration has been analysed for passages of the locomotive and the carriages. - The generation of ground vibration by strong explosions has been studied on a large testing area with sandy soil. The propagating waves were measured in a regular grid of measuring points in 10 to 1000 m. Therefore, the dominance of certain waves at certain distances and the changes of compressional waves and Rayleigh waves could clearly be observed. The results are compared with impulse hammer measurements in the range of 5 to 50 m. - A drop test facility has been built on the testing area of the Federal Institute of Materials Research and Testing (BAM). Heavy masses (containers) of up to 200 t can be dropped from 10 m height on a big reinforced concrete foundation. The foundation was instrumented by accelerometers, strain gauges and pressure cells to give information about the loading condition and by geophones to measure the vibration of the surrounding soil and building. Both excitation processes, the release of the mass and the impact, produce high vibration amplitudes. On a smaller drop foundation, the influence of the drop height and the target stiffness has been studied more systematically. KW - Ground vibration KW - Train passage KW - Explosion KW - Mass drop KW - Amplitude-distance law KW - Filter effect of the soil KW - Train speed KW - Blasting charge KW - Drop height KW - Target stiffness PY - 2016 SN - 2409-4579 VL - 3 IS - 1 SP - 27 EP - 38 PB - Samara State Aerospace University CY - Samara AN - OPUS4-38816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Blanchard, R. A1 - Holtappels, Kai A1 - Kluge, Martin A1 - Schildberg, H.-P. A1 - Zeps, Robert ED - de Rademacher, E. ED - Schmelzer, P. T1 - Sizing of Explosion Pressure Relief using the Efflux Function T2 - Chemical Engineering Transactions N2 - Determination of deflagration venting requirements in chemical/process plants is usually carried out using well established standards employing an empirically based formula. However, this formula is shown to have severe shortcomings, especially in the range of low KG-values, where either negative or inconceivably large venting areas can be predicted. Due to these shortcomings a method has been developed using the efflux function for gases as a basis to predict the mass flow through a vent opening in a vessel during an internal explosion. The simulated rise in pressure due to the internal explosion is quantitatively determined from the KG-value, with the mass flow through the vent opening in the vessel resulting from the pressure difference between the vessel and its surroundings. This enables the maximum overpressure as a function of the pressure relief surface area to be predicted. The method takes into account the temperature of the efflux gases and turbulence enhancement brought about by the venting process. In the following paper explosion pressure relief experiments are described and the results from these experiments are compared to predictions from the efflux method. It is shown that by adjusting the assumed turbulence which evolves during the venting process, the reduced explosion pressure can be reasonably well reproduced. T2 - 15th International Symposium on Loss Prevention and Safety Promotion in the Process Industries and accompanying exhibition CY - Freiburg, Germany DA - 05.06.2016 KW - Deflagration KW - Explosion KW - Pressure relief KW - Venting KW - Efflux PY - 2016 SN - 978-88-95608-39-6 DO - https://doi.org/10.3303/CET1648082 SN - 2283-9216 VL - 48 SP - 487 EP - 492 PB - AIDIC Servizi S.r.l CY - Milano, Italy AN - OPUS4-37918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bradley, Ian A1 - Otremba, Frank A1 - Scarponi, G. E. A1 - Romero-Navarrete, José A. ED - Ao, S.-I. ED - Kim, H. K. ED - Amouzegar, M. A. T1 - Boiling and thermohydraulics within pressure vessels T2 - Transactions on engineering technologies N2 - Exposure of pressure vessels to fire can result in catastrophic explosion and escalation of accidents. The safe transportation of cargo in pressure vessels therefore requires knowledge of what will happen to the cargo in the event of a vehicle derailment or rollover resulting in fire exposure. The chapter presents an overview of selected testing and modelling work undertaken to understand the thermohydraulic processes within a vessel that drive pressurization during fire. A series of experiments highlighting the importance of adequate design and selection of protection systems are summarized. It is concluded that pressure relief alone is typically insufficient to prevent vessel rupture, but the combination of relief and thermal coatings can be effective. KW - BLEVE KW - Explosion KW - LPG KW - PIV KW - Pressure vessel KW - Thermohydraulics PY - 2020 SN - 978-981-15-6847-3 SN - 978-981-15-6848-0 DO - https://doi.org/https://doi.org/10.1007/978-981-15-6848-0_13 SP - 158 EP - 172 PB - Springer Nature CY - Singapore AN - OPUS4-51138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brandes, E. A1 - Hieronymus, Hartmut T1 - Sicherheit bei mikrostrukturierten Reaktoren - Ergebnisse und Schlussfolgerungen aus Untersuchungen am Beispiel von Ethan/Sauerstoff-, Ethen/Sauerstoff- und Ethen/Lachgas-Gemischen JF - PTB-Mitteilungen N2 - Die Mikroverfahrenstechnik (typische innere Abmessungen der Apparaturen < 1000 pin) erfährt zunehmend Interesse für industrielle Anwendungen. Grund hierfür sind verschiedene Vorteile gegenüber konventionellen chemischen. Reaktoren wie ein erhöhter Wärme- und Stofftransport und größere spezifische Phasengrenzen. Hierdurch können im Zuge einer Prozessintensivierung höhere Raum-Zeil-Ausbeuten und Selektivitäten und darüber hinaus eine sicherere Prozessführung erreicht werden. Dies trifft vor allem dann zu, wenn als Oxidationsmittel reiner Sauerstoff, Distickstoffmonoxid (Lachgas) oder ähnliche Substanzen mit hohem Oxidationspotential eingesetzt werden. Vielfach wird angenommen, dass Mikroreaktoren inhärent sicher gegenüber Deflagrations- und Detonationsvorgängen sind. Durchmesser der Reaktionskanäle von 0,5 nun und kleiner lassen Flammendurchschläge zumindest bei Stoffen der Explosionsgruppen I1A und TIB für Gemische mit Luft als Oxidationsmittel und Umgebungsbedingungen (ca. 20 °C, ca. 1.013 mbar) als ausgeschlossen erscheinen. Für die in der Mikroverfahrenstechnik bevorzugten Reaktionsbedingungen wie erhöhter Druck, erhöhte Temperatur und vor allem Oxidationsmittel mit erhöhtem Oxidalionspotential gilt dies jedoch nicht. KW - Mikroreaktor KW - Explosion KW - Detonation KW - Oxidation PY - 2011 SN - 0030-834X VL - 121 IS - 1 SP - 55 EP - 58 PB - Wirtschaftsverl. NW CY - Bremerhaven AN - OPUS4-23515 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Bauer, Margit T1 - Investigation of iron containers for storage of hydrogen gas – Translation of the Adolf Martens’ spectacular failure investigation report published in 1896 JF - Engineering failure analysis N2 - More than 400 iron hydrogen storage containers (also called bottles or cylinders exploded on the air strip Berlin-Tempelhof on May 25, 1894, leaving immense destruction. The Royal Prussian Materials Testing Institute was requested to investigate the material properties and to furnish an expertise, how an increased safety of such cylinders might be achieved for the future under protection of the interests of the air ship service, as for instance by improvement of delivery specifications or respective material inspections. The studies conducted personally by the director Prof. Adolf Martens and his deputy Prof. M. Rudeloff represent one of the first comprehensive failure case investigations in history and initiated BAMs long tradition in failure analysis. Martens and his colleague elaborated quite detailed specimen plans and investigated original failure parts with a special emphasis on conspicuous fracture appearance, but also made comparison experiments with hardened as well as annealed samples. Experienced investigators might identify some first routines how to conduct failure analyses and the importance of Adolf Martens as a pioneer in this field becomes evident. Martens publications about the original expertise Martens, 1896 [1] and [2] include detailed descriptions about the experimental procedures and specimen preparation. Also, quite modern materials testing technologies and machines have been utilized, as for instance light microscopy as well as the tensile testing machines developed by Werder and Pohlmeyer. As special features developed by Martens, precision strain measurements have been applied during respective tensile tests and the so-called micro-photographic apparatus has been adopted to produce photos of the investigated microstructures. Additionally, the publications contain at that time very valuable advices regarding appropriate materials selection for gas storage cylinders. The present contribution provides a nearly complete and as exact as possible translation of the original report Martens, 1896 [1] written in Old German language. Only little changes have been made in the text for a better understanding. KW - Explosion KW - Hydrogen storage cylinders KW - Microstructure KW - Tensile tests KW - Bend tests PY - 2014 DO - https://doi.org/10.1016/j.engfailanal.2014.03.018 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to Prof. A. Martens' SP - 11 EP - 46 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-31083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Holtappels, Kai A1 - Mair, Georg A1 - Grunewald, Thomas T1 - Explosion of iron hydrogen storage containers – Investigations from 120 years ago revisited JF - Engineering failure analysis N2 - The explosion of hydrogen gas storage cylinders on May 25, 1894, represents one of the most spectacular failure cases during the late industrialization period in Germany. With respect to modern applications to hydrogen storage as energy carrier, it has several times been referred to as precedent failure case for the whole industrial sector. The detailed investigation reports by Martens have thus gained interest in the last years, but also, because the publications in 1896 about his expertise already provided in September 1894 document one of the first and most comprehensive investigations which can be regarded as a nucleus for modern failure analysis. After summarizing the newspaper reports in the introduction, the present contribution provides a review of Martens' reports targeted at the development of failure analyses and materials testing procedures as well as potential failure origins. KW - Explosion KW - Hydrogen storage cylinders KW - Failure root cause KW - Hydrogen assisted cracking PY - 2014 DO - https://doi.org/10.1016/j.engfailanal.2014.03.017 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to Prof. A. Martens' SP - 47 EP - 62 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Conrad, Dietrich A1 - Dietlen, Siegmund T1 - Untersuchungen zur Zerfallsfähigkeit von Distickstoffoxid N2 - Aufzeichnung der Ergebnisse der Untersuchung über die Bedingungen des Ablaufs des explosionsartigen Zerfalls von Distickstoffoxid. T3 - BAM Forschungsberichtreihe - 89 KW - Explosion KW - Lachgas PY - 1983 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-3619 SN - 978-3-88314-263-8 SN - 0938-5533 VL - 89 SP - 1 EP - 20 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-361 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Eberwein, Robert T1 - Untersuchung der Gefährdung von Personen und Bauwerken in Folge des Versagens von LNG Kraftstoffspeichern für Fahrzeuge in Tunneln N2 - Basierend auf Methan aus regenerativen Quellen, stellt LNG einen alternativen Kraftstoff für den schweren Fernverkehr da. Gegenüber seinen positiven Eigenschaften birgt der Kraftstoff aber auch Risiken, durch seine sehr niedrige Temperatur und seine Brennbarkeit, für die Personen- und Bauwerkssicherheit. Für die Erforschung der Risiken eignen sich CFD-Modelle, deren Erforschung unter anderem Ziel des TF-SiVi Projekts der BAM war. Einen Einblick in die angewendete Methodik zur Erforschung von Unfallszenarien mit LNG gibt der Vortrag. T2 - Kolloquium EVUR CY - TU-Berlin, Germany DA - 17.07.2019 KW - LNG KW - Tunnel KW - Explosion KW - Stoffausbreitung PY - 2019 AN - OPUS4-48494 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferrero, Fabio A1 - Kluge, Martin A1 - Kreißig, Michael A1 - Hensel, Christina A1 - Schmidtchen, Ulrich A1 - Holtappels, Kai T1 - Preventing the explosion of acetylene cylinders involved in fire with help of numerical modeling JF - Journal of loss prevention in the process industries N2 - The current paper describes a mathematical model, which was developed to simulate the heat transfer in acetylene cylinders during exposure to a fire. The cases of a direct engulfment of the cylinder in the flames and of exposure to a distant fire were considered. Furthermore, the model was also applied to the prediction of the heat transfer during the cooling with water of heated acetylene cylinders, in order to assess the effectiveness of this procedure as a measure to prevent the burst of the cylinder. To provide data for the definition and validation of the model a total of 13 bonfire tests with 8.9-, 10- and 50-dm³-cylinders were performed, where pressure and temperature measurements in the samples were performed. During 5 experiments the fire was extinguished before the expected cylinder burst and a cooling with water was applied. In the paper a short description of the experimental set-up and of the test results is given. Finally, a comparison with the model predictions is provided, showing reasonable agreement. KW - Acetylene cylinders KW - Fire KW - Explosion KW - Cooling KW - Numerical model PY - 2012 DO - https://doi.org/10.1016/j.jlp.2011.10.006 SN - 0950-4230 SN - 1873-3352 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. VL - 25 IS - 2 SP - 364 EP - 372 PB - Butterworth CY - Guildford, Surrey AN - OPUS4-25137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -