TY - CHAP A1 - Fontana, Patrick A1 - Di Bella, C. A1 - Lura, P. ED - Littmann, K. T1 - Evaluation of plastic shrinkage cracking risk of concrete - an advanced test method T2 - 7. Internationales Kolloquium Industrieböden 2010 (Proceedings) T2 - 7. Internationales Kolloquium Industrieböden 2010 CY - Ostfildern, Deutschland DA - 2010-12-14 KW - Concrete KW - Plastic shrinkage KW - Cracking KW - Advanced experimental setup PY - 2010 SN - 3-924813-85-X IS - Chapter 1.6 SP - 117 EP - 125 AN - OPUS4-22854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huismann, Sven T1 - Damage of a high performance concrete at high temperatures due to thermo-mechanical stresses T2 - 7th International PhD Symposium in Civil Engineering, September 11-13, 2008, Stuttgart (Proceedings) T2 - 7th International PhD Symposium in Civil Engineering CY - Stuttgart, Germany DA - 2008-09-11 KW - High performance concrete KW - Fire KW - High temperatures KW - Cracking KW - Thermo-mechanical stresses PY - 2008 IS - Kap. 16.3 SP - 23 EP - 29 AN - OPUS4-17950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Mente, Tobias A1 - Czeskleba, Denis A1 - Wilhelm, Eugen A1 - Kannengießer, Thomas T1 - Residual stresses and hydrogen assisted cracking in thick walled submerged arc weld joints for offshore applications N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods or jackets. These components are typically submerged arc welded (SAW) high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicate the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam / layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled with 22 passes and a seam length of 1,000 mm. Additional welded stiffeners simulated the effect of a high restraint, to stimulate critical HAC conditions. The residual stresses were determined by a robot XRD goniometer. A least square regression analysis of the sin²ψ-law by using multiple ψ- and φ-tilts was applied. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modelling allowed the qualitative estimation of the hydrogen diffusion in the weld, enabling the determination of critical conditions for the formation of HAC. In a future step, a structural simulation will allow the assessment of the welding residual stresses and the comparison to the XRD-values. T2 - International Conference on Residual Stresses ICRS-11 CY - Nancy, France DA - 27.03.2022 KW - Welding KW - X-ray diffraction KW - Hydrogen KW - Cracking KW - Offshore steel PY - 2022 AN - OPUS4-54576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kruschwitz, Sabine T1 - NDT for microstructure and moisture investigation of porous building material JF - The e-journal of nondestructive testing & ultrasonics N2 - Non-destructive testing methods are mostly applied and established for the detection of embedded mounting parts or structural defects in building elements. The assessment of the concrete microstructure or microstructural changes like chemical alterations or the formation of microcracks, e.g. due to material aging, freeze-thaw cycles, alkali-silica reaction and ettringite, is not in the focus of ndt research though. Concrete moisture and enhanced salt contents, which usually trigger all chemical microstructural changes, are other material properties, lacking reliable ways of measuring. But, the assessment of such material properties, on the long term also in a depth resolved manner, is definitely important, when the sustainability of our concrete infrastructure buildings shall be evaluated. New consideration like the potential use of ndt, in particular the combination of different methods and alternate ways of data analysis are subject of research currently undertaken at BAM. These approaches involve for example working towards (i) a deeper understanding of how to measure moisture distributions reliably and follow transport phenomena, (ii) the use of stray phenomena in radar and ultrasound to locate material inhomogeneities or (iii) the application of LIBS for the delineation of diffusion and migration processes but also (iv) the use of new tools for data analysis like data fusion. First results are presented and new ideas discussed. T2 - NDT-CE 2015 - International symposium non-destructive testing in civil engineering CY - Berlin, Germany DA - 15.09.2015 KW - Screed KW - Moisture KW - Non-destructive testing KW - Radar KW - Microstructure KW - Monitoring KW - Concrete deterioration KW - Cracking PY - 2015 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-347593 UR - http://www.ndt.net/?id=18354 SN - 1435-4934 VL - 20 IS - 11 SP - 1 EP - 5 PB - NDT.net CY - Kirchwald AN - OPUS4-34759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pirskawetz, Stephan A1 - Menningen, J. A1 - Siegesmund, S. ED - Siegesmund, S. ED - Middendorf, B. T1 - Acoustic emissions - Insights into the decay mechanisms of thermally treated marbles T2 - MONUMENT FUTURE: Decay and Conservation of Stone. - Proceedings of the 14th International Congress on the Deterioration and Conservation of Stone N2 - Since ancient times, marble has been the preferred material for monuments, sculptures, Ornaments and architecture. Though the stone is often a Chosen material, long-term exposure of marble results in cumulative deterioration of the rock fabric. The rate and extent of deterioration depends on the rock fabric and the climatic conditions. Besides the thermal vulnerability of marble, a combination of thermal and hygric fluctuation accelerates the deterioration process. The weathering sensitivity of marbles can be characterised by the irreversible length change of samples after heating under thermohygric conditions as residual strain. This residual strain is a non-reversible deterioration and caused by microcracking induced by a pronounced anisotropy of the thermal dilatation coefficient of calcite. In brittle materials like marble, cracking and crack growth or friction on crack surfaces are accompanied by release of acoustic waves. The analysis of these acoustic emissions can give a deeper insight into the deterioration mechanism of marble. In this study, acoustic emissions of thermohygric treated marble were analysed and correlated with ultrasonic velocities, thermal dilatation and residual strains. Therefore, different types of calcitic marble were cyclically heated from 20 °C to 90 °C and after equilibration of the samples cooled down again to 20 °C. While the first cycles were performed under dry conditions, the following were executed in a humid environment. The analysis of acoustic emissions enables one to determine when cracking occurs during the thermal treatment. It is also possible to differentiate microcracking from internal friction. Furthermore, the evolution of Deterioration can be estimated based on ultrasonic velocities. The combination of acoustic Methods and strain measurement gives an insight into the disintegration mechanism and Supports the development of prevention strategies. T2 - 14th International Congress on the Deterioration and Conservation of Stone CY - Göttingen, Germany DA - 07.09.2020 KW - Marble KW - Weathering sensitivity KW - Cracking KW - Acoustic emission KW - Residual strain PY - 2020 SN - 978-3-96311-172-3 SP - 185 EP - 190 PB - mdv Mitteldeutscher Verlag GmbH CY - Halle (Saale) AN - OPUS4-51964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Suwala, Hubert ED - Bleck, W. ED - Raabe, D. T1 - Influence of crack-imperfections on mechnical properties of resistance spot welded ferritic-austenitic steel sheet combinations T2 - 2nd HMnS -2nd International conference on high manganese steels 2014 (Proceedings) T2 - 2nd HMnS -2nd International conference on high manganese steels 2014 CY - Aachen, Germany DA - 2014-08-31 KW - Resistance spot welding KW - Frequency KW - Stiffness KW - Advanced high strength steels KW - FeMn-steels KW - Cracking KW - Defects PY - 2014 SP - A-107, 1-5 AN - OPUS4-32549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Rhode, Michael A1 - Nietzke, Jonathan A1 - Wilhelm, Eugen A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Characterization of Hydrogen Diffusion in a Thick-walled Submerged Arc Multi-Layer Weld Joint N2 - The energy production of the future will be dominated by CO2-emission free techniques like wind turbines and become essential in scope of the planned hydrogen economy. As onshore installation capacity is limited, the in-crease of the number of offshore wind turbines (OWT) is a major goal. In that connection, the OWTs continuously increase in size and weight and demand adequate foundations concepts like monopiles or tripods. These compo-nents are typically manufactured from welded mild steel plates with thickness up to 200 mm. The predominant welding technique is submerged arc welding (SAW) with up to five wires. In accordance with the standards, the occurrence of delayed hydrogen assisted cracking is anticipated by either a hydrogen removal heat treatment (HRHT) or a so-called minimum waiting time (MWT) before non-destructive testing (NDT) of the respective weld joint is allowed. The reason for the MWT is the necessary time for the hydrogen diffusion at ambient temperature due the high plate thickness. Both the effectiveness of a HRHT at elevated temperatures or the MWT at ambient temperature can be estimated by calculation of the diffusion time. This time depends on reliable hydrogen diffu-sion coefficients and these are rare in literature. For that reason, this study presents the hydrogen diffusion coef-ficients obtained from a multi-layer SAW joint of an offshore steel grade. Two different experimental techniques were used to identify the respective diffusion behavior: (1) hydrogen desorption experiments with a carrier gas hot extraction analyzer at elevated temperatures for the characterization of a HRHT and (2) the electrochemical permeation technique at ambient temperature for the characterization of an MWT. From both experiments, the respective diffusion coefficients were calculated. The obtained DCs are different from those reported in literature, i.e., the duration or applicability of a HRHT or MWT must be critically discussed. T2 - European Congress and Exhibition on Advanced Materials and Process - Euromat 2021 CY - Online meeting DA - 13.09.2021 KW - Welding KW - Offshore KW - Wind turbine KW - Hydrogen KW - Cracking PY - 2021 AN - OPUS4-53296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Diese, Marcel A1 - Rhode, Michael A1 - Schroepfer, Dirk A1 - Richter, Tim T1 - Characterization of cracking phenomena in TIG welds of high and medium entropy alloy N2 - Multi-element systems with defined entropy (HEA - High Entropy Alloy or MEA - Medium Entropy Alloy) are rather new material concepts that are becoming increasingly important in materials research and development. Some HEA systems show significantly improved properties or combinations of properties, e.g., the overcome of the trade-off between high strength and ductility. Thus, the synthesis, the resulting microstructures, and properties of HEA have been primarily investigated so far. In addition, processing is crucial to achieve a transfer of potential HEA/MEA materials to real applications, e.g. highly stressed components. Since fusion welding is the most important joining process for metals, it is of vital importance to investigate the weldability of these materials. However, this has rarely been the subject of research up to date. For that reason, in this work the weldability depending on the surface preparation of a CoCrFeMnNi-HEA and a CoCrNi-MEA for TIG welding is investigated. The fusion welding of longer plates is described here for the first time for the CoCrNi alloy. The welds of both materials showed distinct formation of cracks in the heat affected zone (HAZ). Optical and scanning electron microscopy analysis clearly confirmed an intergranular fracture topography. But based on the results, the crack mechanism cannot be conclusively clarified as either a liquid metal embrittlement (LME) or hot cracking like liquid film separation occurred. T2 - 2nd International Conference on Advanced Joining Processes CY - Online meeting DA - 21.10.2021 KW - High Entropy Alloy KW - TIG welding KW - Cracking PY - 2021 AN - OPUS4-53607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -