TY - JOUR A1 - Cross, Carl Edward A1 - Böllinghaus, Thomas T1 - The Effect of Restraint on weld Solidification Cracking in Aluminium JF - Welding in the world KW - Aluminium alloys KW - Light metals KW - Solidification cracking KW - Cracking KW - Defects KW - Hot cracking KW - Crack initiation KW - Strain KW - Restraint PY - 2006 SN - 0043-2288 SN - 1878-6669 VL - 50 IS - 11/12 SP - 51 EP - 54 PB - Springer CY - Oxford AN - OPUS4-14220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kannengießer, Thomas A1 - Böllinghaus, Thomas T1 - Hot cracking tests - an overview of present technologies and applications JF - Welding in the world N2 - Hot crack prevention in materials production and processing is an essential prerequisite for welded component safety. The causes of hot cracking can ultimately be attributed to the occurrence of metallurgical effects and to structural loads. More than 140 hot cracking test procedures have hitherto been developed for determining the hot cracking resistance. In principle, they are divided in self-restraint and externally loaded hot cracking tests with diverse process variants. Only some of the hot cracking tests are international standardized. Although various factors are known that encourage or prevent hot cracking, it is often not possible even with defined welding conditions to draw immediate conclusions about the hot cracking resistance of a welded component alone from a metallurgical composition of the base and filler materials. Based on an evaluation of the existing theories relating to hot cracking susceptibility assessment, this study summarizes the major hot cracking test procedures and highlights the application limits of the test procedures by presenting overviews along with explanations. It shows that weld hot cracking tests can generally be used to rank materials, welding consumables, and welding conditions. The evaluation of hot cracking test results and of their transferability among one another and to real components always requires consideration of the close relationships between metallurgy, welding process, and parameters, respectively, and prevailing restraint conditions. KW - Arc welding KW - Quality control KW - Weldability tests KW - Cracking KW - Hot cracking KW - Solidification cracking PY - 2014 DO - https://doi.org/10.1007/s40194-014-0126-y SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 3 SP - 397 EP - 421 PB - Springer CY - Oxford AN - OPUS4-30611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wongpanya, Pornwasa A1 - Böllinghaus, Thomas A1 - Lothongkum, G. A1 - Kannengießer, Thomas T1 - Effects of Preheating and Interpass Temperature on Stresses in S 1100 QL Multi-Pass Butt-Welds JF - Welding in the world KW - Cold cracking KW - Cracking KW - Defects KW - Heat treatment KW - High stength steels KW - Mathematical models KW - Multirun welding KW - Preheating KW - Residual stresses KW - Restraint KW - Steels KW - Structural steels KW - Temperature KW - Weldability tests PY - 2008 SN - 0043-2288 SN - 1878-6669 VL - 52 IS - 3/4 SP - 79 EP - 92 PB - Springer CY - Oxford AN - OPUS4-17334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -