TY - CHAP A1 - Adam, Christian A1 - Krüger, Oliver ED - IWA Publishing, T1 - Wastewater as a resource: From rare earth metals to phosphorus T2 - Phosphorus: Polluter and Resource of the Future N2 - Wastewater contains a diverse array of organic and inorganic compounds and its complex composition strongly depends on the location and the connected dischargers. However, municipal wastewater as a carrier of feces and urine generally contains considerable amounts of the main nutrients nitrogen and phosphorus. The latter is in the focus of the discussions about the recovery potential of wastewater due to the relatively high mass flows of phosphorus in wastewater and the finite nature and decreasing quality of phosphate rock reserves. But due to the presence of the whole periodic table of elements, wastewater might contain further valuable components of interest for recovery including those defined as critical raw materials by the European Commission. Phosphorus and most of the other critical raw materials are fixed in the sewage sludge and after incineration in the sewage sludge ash (SSA). This is accompanied by high concentration factors from wastewater via sludge to ash. However, the mass fractions of the majority of elements in sewage sludge are comparable to those of the earth crust, indicating no relative enrichment. Nevertheless, enrichment factors of 100 or higher are given for phosphorus, copper, zinc, cadmium, silver, tin, lead and the platinum group elements indicating an anthropogenic input. An economic value of sewage sludge was estimated to $460,-/t calculated on the basis of the respective market prices for high purity elements – a theoretical value. A German survey of sewage sludge ashes showed that the mass fractions and the mass flows of most of the elements present in SSA are probably too low for an economic recovery. In most cases the mass flows are rather small compared to the imports and the chemical forms are not suitable for recovery. An exception is phosphorus that is present in high mass fractions up to 13% and that bears a high substitution potential. If the application of P-recovery technologies lead to a further concentration of valuable elements e.g. as by-products in side streams of the process, it would probably make also the recovery of other elements of economic interest. KW - Wastewater KW - Sewage sludge PY - 2018 SN - 978-1-78040-835-4 SN - 978-1-78040-836-1 SN - 978-1-78040-954-2 DO - https://doi.org/10.2166/9781780408361 SP - 241 EP - 252 PB - IWA Publishing CY - London AN - OPUS4-45679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Raniro, H.R. A1 - Teles, A.P. A1 - Pavinato, P.S. A1 - Adam, Christian T1 - Phosphorus solubility and dynamics in a tropical soil under sources derived from wastewater and sewage sludge JF - Journal of Environmental Management N2 - Conventional phosphate fertilizers are usually highly water-soluble and rapidly solubilize when moistened by the soil solution. However, if this solubilization is not in alignment with plants demand, P can react with the soil colloidal phase, becoming less available over time. This is more pronounced in acidic, oxidic tropical soils, with high P adsorption capacity, reducing the efficiency of P fertilization. Furthermore, these fertilizers are derived from phosphate rock, a non-renewable resource, generating an environmental impact. To assess these concerns, waste-recycled P sources (struvite, hazenite and AshDec®) were studied for their potential of reducing P Fixation by the soil and improving the agronomic efficiency of the P fertilization. In our work, we compared the solubilization dynamics of struvite, hazenite, AshDec® to triple superphosphate (TSP) in a sandy clay loam Ferralsol, as well as their effect on solution pH and on soil P pools (labile, moderately-labile and non-labile) via an incubation experiment. Leaching columns containing 50 g of soil with surface application of 100 mg per column (mg col􀀀 1) of P from each selected fertilizer and one control (nil-P) were evaluated for 60 days. Daily leachate samples from the column were analyzed for P content and pH. Soil was stratified in the end and submitted to P fractionation. All results were analyzed considering p < 0.05. Our findings showed that TSP and struvite promoted an acid P release reaction (reaching pHs of 4.3 and 5.5 respectively), while AshDec® and hazenite reaction was alkaline (reaching pHs of 8.4 and 8.5 respectively). Furthermore, TSP promoted the highest P release among all sources in 60 days (52.8 mg col􀀀 1) and showed rapid release dynamic in the beginning, while struvite and hazenite showed late release dynamics and lower total leached P (29.7 and 15.5 mg col􀀀 1 P respectively). In contrast, no P-release was detected in the leachate of the AshDec® over the whole trial period. Struvite promoted the highest soil labile P concentration (7938 mg kg􀀀 1), followed by hazenite (5877 mg kg􀀀 1) and AshDec® (4468 mg kg􀀀 1), all higher than TSP (3821 mg kg􀀀 1), while AshDec® showed high moderately-labile P (9214 mg kg􀀀 1), reaffirming its delayed release potential. KW - Phosphate dynamics KW - Struvite KW - Wastewater KW - Sewage sludge ash KW - CaNaPO4 KW - P speciation PY - 2022 DO - https://doi.org/10.1016/j.jenvman.2021.113984 VL - 302 IS - Part A SP - 113984 PB - Elsevier Ltd. AN - OPUS4-53600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreiber, Frank T1 - BIOCIDE N2 - This presentation gives an overview about the BIOCIDE project performed with the Aquatic Pollutants joint call. T2 - Aquatic Pollutants TransNet workshop CY - Online meeting DA - 09.11.2022 KW - Antimicrobial resistance KW - Bacteria KW - Biofilms KW - Biocides KW - Risk assessment KW - Wastewater PY - 2022 AN - OPUS4-56265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Anne-Christine A1 - Schreiber, Frank T1 - Assessing co-selection of biocide and antibiotic resistance in wastewater microbial communities N2 - Biocides are used for a wide range of purposes, including disinfectants or preservatives. Biocides play a major role in the prevention of microbial infections in healthcare and animal husbandry. The use of biocides often leads to the discharge of active biocidal substances into wastewater streams, causing the exposure of wastewater microbial communities to subinhibitory concentrations. In turn, it is known that wastewater treatment plants (WWTP) are hotspots for antibiotic resistant bacteria. Since similar mechanisms confer resistance to biocides and antibiotics, exposure to biocides can result in co-selection of antibiotic resistant bacteria in WWTP due to biocides. Here, we investigate the magnitude and the drivers of co-selection of antibiotic resistance in natural wastewater microbial communities upon biocide exposure. Microbial communities will be sampled at the WWTP Ruhleben in Berlin and characterized regarding their biocide and antibiotic resistance. Changes in the resistance level after exposure to different biocides will be determined by enumerating resistant and non-resistant E. coli and heterotrophic bacteria on selective plates with and without several biocides and antibiotics. Moreover, we are establishing a synthetic community comprising about 100 environmental E. coli isolates each with different antimicrobial resistance traits. Each isolate will be tagged with a unique DNA-barcode. All isolates will be pooled and exposed to different biocides at various concentrations. The barcode labeling enables us to determine the abundance of each isolate at the beginning and end of the experiment by transposon-tag sequencing. The project results will inform risk assessment of the effects of biocidal residues on antimicrobial resistance selection in WWTP. The project is part of the BIOCIDE consortium funded within the call on Aquatic pollutants by JPI-AMR, JPI-OCEANS and JPI-WATER. T2 - 6th International Symposium onn the Environmental Dimension of Antibiotic Resistance - EDAR 6 CY - Gothenburg, Sweden DA - 22.09.2022 KW - Antibiotic resisitance KW - Biocide KW - Wastewater KW - Risk assesment PY - 2022 AN - OPUS4-56796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schulz, Anne-Christine A1 - Schreiber, Frank T1 - Co-selection for biocide and antibiotic resistance in microbial wastewater communities N2 - Biocides are used for a wide range of purposes, including disinfectants or preservatives. They play a major role in the prevention of microbial infections in healthcare and animal husbandry. The use of biocides often leads to the discharge of active biocidal substances into wastewater streams, causing the exposure of wastewater microbial communities to subinhibitory concentrations. In turn, it is known that wastewater treatment plants (WWTP) are hotspots for antibiotic resistant bacteria. Since similar mechanisms confer resistance to biocides and antibiotics, exposure to biocides can result in co-selection of antibiotic resistant bacteria in WWTP Here, we want to investigate co-selection processes of antibiotic resistance in natural WWTP microbial communities upon biocide exposure. Microbial communities were sampled at the WWTP Ruhleben in Berlin and characterized regarding their susceptibility against different clinically relevant antibiotics. To investigate the link between biocide exposure and antibiotic resistance, changes in the susceptibility level after exposure to environmentally relevant concentrations of the commonly used biocide didecyldimethylammonium chloride (DDAC) will be determined by enumerating resistant and non-resistant E. coli on selective plates with and without antibiotics and DDAC. In case of antibiotics, clinical breakpoint concentrations according to EUCAST will be used to discriminate between susceptible and resistant strains. In case of DDAC (and biocides in general), clinical breakpoints do not exist. Therefore, we determined a cut-off concentration at which the majority of naturally-occurring E. coli strains cannot grow anymore based on (I) the MIC (minimal inhibitory concentration) distribution, and (II) by plating wastewater communities onto selective indicator agar plates loaded with increasing DDAC concentration. Additionally, antibiotic cross-resistance will be determined by spotting single colonies, isolated from DDAC-selective plates onto antibiotic plates. The results of our experiments will help to determine selective concentrations and to estimate the risk of antibiotic co-selection and cross-resistance in microbial WWTP communities upon biocide exposure. T2 - Annual Conference 2023 of the Association for General and Applied Microbiology CY - Göttingen, Germany DA - 10.09.2023 KW - Antibiotic resisitance KW - Biocide KW - Wastewater KW - Risk assesment PY - 2023 AN - OPUS4-58510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sichler, Theresa Constanze A1 - Adam, Christian A1 - Barjenbruch, M. A1 - Montag, D. A1 - Mauch, Tatjana A1 - Sommerfeld, Thomas A1 - Ehm, J.H. T1 - Variation of the element composition of municipal sewage sludges in the context of new regulations on phosphorus recovery in Germany JF - Environmental Sciences Europe N2 - Phosphorus (P) recovery is obligatory for all sewage sludges with more than 20 g P/kg dry matter (DM) from 2029 in Germany. Nine wastewater treatment plants (WWTPs) were chosen to investigate variations of phosphorus contents and other parameters in sewage sludge over the year. Monthly sewage sludge samples from each WWTP were analyzed for phosphorus and other matrix elements (C, N, H, Ca, Fe, Al, etc.), for several trace elements (As, Cr, Mo, Ni, Pb, Sn) and loss of ignition. Among the nine WWTPs, there are four which have phosphorus contents both above and below the recovery limit of 20 g/kg DM along the year. Considering the average phosphorus content over the year, only one of them is below the limit. Compared to other matrix elements and parameters, phosphorus fuctuations are low with an average of 7% over all nine WWTPs. In total, only hydrogen and carbon are more constant in the sludge. In several WWTPs with chemical phosphorus elimination, phosphorus fuctuations showed similar courses like iron and/or aluminum. WWTPs with chamber flter presses rather showed dilution efects of calcium dosage. As result of this study, monthly phosphorus measurement is highly recommended to determine whether a WWTP is below the 20 g/kg DM limit. KW - Sewage sludge KW - Phosphorus recovery KW - Wastewater KW - Phosphorus elimination PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557499 DO - https://doi.org/10.1186/s12302-022-00658-4 SN - 2190-4707 VL - 34 IS - 1 SP - 1 EP - 12 PB - Springer Nature CY - Berlin AN - OPUS4-55749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sichler, Theresa Constanze A1 - Adam, Christian A1 - Montag, D. A1 - Barjenbruch, M. T1 - Future nutrient recovery from sewage sludge regarding three different scenarios - German case study JF - Journal of Cleaner Production N2 - Agricultural sewage sludge utilization becomes less important in Germany. In 2017, new fertilizer and waste laws caused the agricultural sewage sludge utilization to collapse by more than a quarter. From 2029, German wastewater treatment plants (WWTPs) must recover phosphorus (P) from sewage sludge if it contains more than 2 wt % P. Agricultural utilization will be prohibited for large WWTPs >100,000 population equivalents (pe) from 2029 and >50,000 pe from 2032. In Germany, each federal state must annually report amounts and quality of agriculturally utilized sewage sludge which was 16% of the total disposal in 2019. The reports of 10 states were evaluated for 2016 and 2017 representing approx. 60% of the total agriculturally used sludge volume. In 2016, 60% of the WWTPs’ sludges exceeded the recovery limit of 2 wt % P which is 70% of the amount of sludge and 85% of the phosphorus load. Other nutrients are not affected by the recovery obligation. However, many P recovery processes recover other nutrients, too. Considering three different scenarios for future German sewage sludge disposal shows that 70–77% of the P load in sewage sludge will probably be recovered in the future. At the same time, this applies for about 0–16% nitrogen, 36–52% of calcium, 31–53% of potassium, and 40–52% of magnesium. However, these recovered nutrients loads can substitute only 1% or less of the commercial fertilizer demand except from phosphorus which is up to 43% of the demand. KW - Sewage sludge KW - Phosphorus recovery KW - Wastewater KW - Sewage sludge disposal PY - 2022 DO - https://doi.org/10.1016/j.jclepro.2021.130130 VL - 333 SP - 1 EP - 10 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-54186 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smol, M. A1 - Adam, Christian A1 - Krüger, O. T1 - Use of nutrients from wastewater for the fertilizer industry - approaches towards the implementation of the circular economy (CE) JF - Desalination and Water Treatment N2 - More sustainable waste management practices are an important element in the Transformation towards a circular economy (CE). Activities in this area should be dedicated to all groups of waste, including those generated in the water and sewage sector. This paper presents the characteristics of sewage sludge ash (SSA) coming from Polish municipal waste incineration plants. Due to the high content of nutrients such as phosphorus (8.01% P2O5), calcium (5.11% CaO) and magnesium (2.75% MgO), the analyzed SSA may constitute a valuable source of raw materials for the fertilizer industry. Despite the good fertilizing properties of the SSA, in some cases the presence of heavy metals such as cadmium (0.74–1.4 mg/kg dry matter), lead (49.8–99 mg/kg dry matter), mercury (3.93 mg/kg dry matter) and arsenic (4.23–4.43 mg/kg dry matter) and poor bioavailability of P from SSA disqualifies this waste from direct use as a fertilizer. Therefore, it is necessary to look for methods that will allow the municipal SSA to be processed, for example, technologies for the extraction of phosphorus and the production of phosphate fertilizer. This way of SSA management is in the line with the CE assumptions, in which waste becomes a valuable source of secondary raw materials. Fertilizer produced from waste meeting quality, safety and labelling requirements and limits of organic, microbiological and physical contaminants will be able to be traded freely within the European Union (EU) and receive the CE marking. The idea of use of SSA for fertilizer purposes is consistent not only with the objectives of the CE but also with the Polish National Waste Management Plan 2022 and the Municipal Sewage Sludge Strategy 2019–2022, which emphasizes the necessity to maximize the use of biogenic substances contained in wastewater. Therefore, sustainable management of SSA, in particular its storage in a way enabling the recovery of phosphorus, should be promoted. KW - Wastewater KW - Circular economy KW - Fertilizer KW - Sewage sludge KW - Phosphorus PY - 2020 DO - https://doi.org/10.5004/dwt.2020.25113 VL - 1 SP - 1 EP - 9 PB - Desalination Publications CY - Hopkinton, MA 01748, USA AN - OPUS4-50646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Roesch, Philipp A1 - Wittwer, Philipp A1 - Kalbe, Ute A1 - Simon, Franz-Georg T1 - Diffusive Gradients in Thin-films (DGT) technique as screening tool for per- and polyfluoroalkyl substances (PFAS) contamination in wastewater-based fertilizers N2 - Per- and polyfluoroalkyl substances (PFAS) are a large group of organofluorine surfactants used in the formulations of thousands of consumer goods, including aqueous film-forming foams (AFFF) used to suppress aviation fires in training scenarios, non-stick cookware, fast-food wrappers, water-repellent fabrics, medical equipment, and plastic and leather products. As a result of the perpetual use of PFAS containing products, effluents and sewage sludge from wastewater treatment plants (WWTPs) have been observed to be an important pathway for PFAS into the environment. In Germany, phosphorus and other nutrients from sewage sludge and wastewater should be recycled in WWTPs of cities with a large population. However, it is not clear if PFAS contamination from wastewater and sewage sludge end up in novel wastewater-based fertilizers. Normally, PFAS are analyzed using PFAS protocols typically with time-consuming extraction steps and LC-MS-MS quantification. However, for screening of PFAS contaminations in sewage sludge or wastewater-based fertilizers also passive sampler based on the Diffusive Gradients in Thin-films (DGT) technique can be used for the PFAS extraction. Afterwards, combustion ion chromatography (CIC) can be applied to analyse the “total” amount of PFAS on the passive sampler. Here, we show results from the DGT method in comparison to those of the extractable organic fluorine (EOF) method for a variety of wastewater-based fertilizers. Additionally, we analysed the adsorption of PFAS on the weak anion exchanger (WAX) based DGT passive sampler binding layer by infrared and fluorine K-edge X-ray adsorption near-edge structure (XANES) spectroscopy. T2 - SETAC Europe 2022 CY - Copenhagen, Denmark DA - 15.05.2022 KW - Passive sampling KW - Per- and Polyfluoroalkyl substances (PFAS) KW - Sewage sludge KW - Wastewater PY - 2022 AN - OPUS4-54883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -