TY - CONF A1 - Scarponi, G. A1 - Eberwein, Robert A1 - Otremba, Frank A1 - Cozzani, V. T1 - Modelling the response of LH2 tanks equipment with Multi Layer Insulation to fire exposure N2 - Hydrogen is among the most promising candidates to replace fossil fuels in the energy transition. Hydrogen-powered vehicles are already a reality, and their number is foreseen to increase considerably in the next decade. Among the possible solutions to store hydrogen in such vehicles, cryogenic tanks equipped with multi-layer insulation (MLI) appear to be one of the most effective to ensure high volumetric energy density. A potential loss of integrity of this kind of storage equipment might lead to severe consequences due to high flammability of hydrogen. This might occur, for instance, as a consequence of the exposure to an external source of heat such as a fire following a car accident. Real scale fire test results suggest that the super insulating performance of MLI systems may undergo severe degradation when this is subjected to high temperature, leaving the tank almost unprotected and leading to failure in a relatively short time. Characterizing this kind of accident scenario is crucial to ensure a safe design of storage tanks for Hydrogen-powered vehicles. This presentation provides an overview of the ongoing research work on modelling MLI LH2 tanks exposed to fire. Lumped and computational fluid dynamic based models are presented, highlighting current gaps. The relevance of taking MLI degradation into account when simulating the pressure increase due to external fire exposure is here demonstrated through the analysis case studies. T2 - H2-Kolloquium CY - Online meeting DA - 21.06.2023 KW - LH2 KW - Cold KW - MLI PY - 2023 AN - OPUS4-57878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -