TY - CONF A1 - Rieck, Arielle A1 - Schwarz, Irina T1 - Electrochemical CO2 reduction (CO2RR) coupled to gas fermentation with acetogenic bacteria N2 - For the realization of a sustainable energy economy, it is of great importance to develop CO2 -neutral methods producing multi-carbon organic chemicals used as feedstock in the chemical industry as well as carbon-neutral fuels. A promising method to alleviate the greenhouse effect and thereby forming value-added chemicals or syngas as an energy carrier, is through the electrochemical CO2 reduction reaction (CO2RR). In this work, a bioelectrotechnological approach is developed, in which the CO2RR reaction products (CO and H2) are directly fed to bacteria (acetogens), who use them as “reduction equivalents” to further metabolize CO2 to valuable carbon compounds. Therefore, a bio-electrochemical system consisting of a bioreactor coupled to a CO2 electrolysis cell will be established. Currently, scarce catalysts such as Ag and Au are used as for the CO2RR which may hamper the use of decentral CO2 conversion technology for cost reasons. The technological viability of the bacteria-assisted electrolysis depends on the usage of efficient, biocompatible, and selective electrocatalysts prepared from inexpensive precursors. Porous transition metal and nitrogen co-doped carbons (M-N-Cs) have emerged as precious-metal free electrocatalysts for the direct electrochemical reduction of CO2 into CO and are excellent candidates for scale-up and deployment in technological applications. Furthermore, Co/Ni/Zn functioning as the catalytically active sites will be used, as they are expected to depict non-bactericidal properties in contrast to Cu and Ag catalysts. The non-bactericidal property could e.g., allow for application within the hybrid device (bio-electrochemical system), without the need to separate bacteria and cathode catalyst. The MNCs with the most promising electrocatalytic activity and selectivity will be evaluated in abiotic conditions in the hybrid bio-electrochemical reactor system. T2 - DFG Summer School Workshop CY - Hamburg, Germany DA - 01.09.2022 KW - Katalysator KW - CO2 Reduktion KW - Bioelectrochemical CO2 reduction PY - 2022 AN - OPUS4-56618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -