TY - CONF A1 - Müller, Anja A1 - Unger, Wolfgang T1 - WP3 (A 3.3.5 / 3.3.6) electron spectroscopy of core/shell nanoparticles N2 - The presentation summarizes the progress of activity 3.3.5 and 3.3.6 of the Innanopart project. These activities focus on the investigation of different core@shell nanoparticles using synchrotron-radiation-XPS and AES. T2 - Innanopart 18 Months Meeting (EMPIR) CY - Vienna, Austria DA - 31.10.2016 KW - XPS KW - Synchrotron KW - Depth-Profiling KW - AES KW - Core@Shell Nanoparticles PY - 2016 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-38792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Lippitz, Andreas A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Unger, Wolfgang T1 - Progress Talk 3 / Investigating the dimensions of core|shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - This presentation deals with the progress between month twelve and nineteen of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 30.01.2018 KW - Core-shell nanoparticles KW - Metrology KW - PS KW - PTFE KW - Polymers KW - SEM KW - STXM PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-43981 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, Sufal A1 - Sparnacci, Katia A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Investigation of core-shell nanoparticles using scanning transmission x-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in good agreement with the SEM results (deviation equal or less than 10%) and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - DPG-Frühjahrstagung der Sektion Kondensierte Materie gemeinsam mit der EPS CY - Berlin, Germany DA - 11.03.2018 KW - STXM KW - SEM KW - PS KW - PTFE KW - Core-shell nanoparticles PY - 2018 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-44654 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Determining the shell thickness of core-shell nanoparticles using scanning transmission X-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in agreement with the SEM results and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - Innanopart open day CY - London, UK DA - 25.04.2018 KW - STXM KW - SEM KW - PTFE KW - PS KW - Polymer KW - Core-shell nanoparticles PY - 2018 AN - OPUS4-44841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Heinrich, Thomas A1 - Tougaard, S. A1 - Werner, W. S. M. A1 - Hronek, M. A1 - Kunz, Valentin A1 - Benemann, Sigrid A1 - Hodoroaba, Vasile-Dan A1 - Radnik, Jörg A1 - Stockmann, Jörg M. A1 - Nirmalananthan-Budau, Nithiya A1 - Geißler, Daniel A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Determining thickness and completeness of the shell for polymer core shell nanoparticles by XPS, ToF SIMS and T SEM N2 - Core-shell nanoparticles (CSNPs) have become indispensable in various industrial applications. However, their real internal structure usually deviates from an ideal core-shell structure. To control how the particles perform with regard to their specific applications, characterization techniques are required that can distinguish an ideal from a non-ideal morphology. In this work, we investigated PTFE-PMMA (four samples) and PTFE-PS (six samples) polymer CSNPs with constant core diameter (45 nm) but varying shell thickness (4-50 nm). As confirmed by transmission scanning electron microscopy (T-SEM), the shell completely covers the core for the PTFE-PMMA nanoparticles, while the encapsulation of the core by the shell material is incomplete for the PTFE-PS nanoparticles. X-ray photoelectron spectroscopy (XPS) was applied to determine the shell thickness of the nanoparticles. The software SESSA V2.0 was used to analyze the intensities of the elastic peaks and the QUASES software package to evaluate the shape of the inelastic background in the XPS Survey spectra. For the first time, nanoparticle shell thicknesses are presented which are exclusively based on the analysis of the XPS inelastic background. Furthermore, principal component analysis (PCA) assisted time-of-flight secondary ion mass spectrometry (ToF-SIMS) of the PTFE-PS nanoparticle sample set revealed a systematic variation among the samples and, thus, confirmed the incomplete encapsulation of the core by the shell material. Opposed to that, no variation is observed in the PCA scores plots of the PTFE-PMMA nanoparticle sample set. Consequently, the complete coverage of the core by the shell material is proved by ToF-SIMS with a certainty that cannot be achieved by XPS and T-SEM. T2 - 18th European Conference on Applications of Surface and Interface Analysis (ECASIA) CY - Dresden, Germany DA - 15.09.2019 KW - Core-shell nanoparticles KW - Polymers KW - ToF-SIMS KW - XPS KW - XPS background analysis PY - 2019 AN - OPUS4-49187 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja T1 - Progress Talk 1 / Working Group Meeting of Prof. Erhard Kemnitz (Humboldt-Universität zu Berlin) N2 - This presentation deals with the progress between month one and six of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 06.02.2017 KW - Core@shell nanoparticles KW - SEM KW - Synchrotron KW - XPS KW - TEM KW - EDX PY - 2017 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-40892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja T1 - Progress Talk 2 / Working Group Meeting of Prof. Erhard Kemnitz (Humboldt-Universität zu Berlin) N2 - This presentation deals with the progress between month seven and eleven of my PhD thesis. I prepared it, in order to update my supervisor Prof. Kemnitz and my colleagues from the department of chemistry at the Humboldt-Universität zu Berlin (HU). T2 - Working Group Meeting of Prof. Erhard Kemnitz CY - Humboldt-Universität zu Berlin (HU), Germany DA - 20.06.2017 KW - XPS KW - Synchrotron KW - Core@shell nanoparticles KW - SEM KW - ICP-MS PY - 2017 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-40893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Swaraj, S. A1 - Sparnacci, K. A1 - Unger, Wolfgang T1 - Investigation of core-shell nanoparticles using scanning transmission x-ray microscopy (STXM) N2 - A scanning transmission x-ray microscopy (STXM) based methodology is introduced for determining the dimensions (shell thickness, core and total diameter) of core-shell nanoparticles which exhibit a strong x-ray absorption contrast and a well-defined interface between core and shell material. A low radiation dosage during data acquisition and, therefore, less x-ray beam induced damage of the sample is achieved by recording STXM images only at two predetermined energies of maximum absorption contrast, instead of recording a stack of images across the whole absorption edge. A model core-shell nanoparticle, polytetrafluoroethylene (PTFE) cores with polystyrene (PS) shell, is used for demonstration. Near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the significant difference in x-ray absorption behavior between PTFE and PS. Additionally, due to the insolubility of styrene in PTFE a well-defined interface between particle core and shell is expected. In order to validate the STXM results, both the naked PTFE cores as well as the complete core-shell nanoparticles are examined by scanning electron microscopy (SEM). The introduced STXM based methodology yields particle dimensions in good agreement with the SEM results (deviation equal or less than 10%) and provides additional information such as the position of the particle core which cannot be extracted from a SEM micrograph. T2 - European conference on applications of surface and interface analysis 2017 (ECASIA'17) CY - Montpellier, France DA - 24.09.2017 KW - STXM KW - SEM KW - PTFE KW - PS KW - Core-shell nanoparticles KW - Polymers KW - Metrology PY - 2017 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-42427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Unger, Wolfgang A1 - Wirth, Thomas A1 - Kjaervik, Marit A1 - Cant, D. A1 - Shard, A. A1 - Clifford, C. T1 - Measurement of the thickness and nature of nanoparticle coatings - ISO/PWI TR 23173 N2 - This presentation explains the outline and scientific content of the ISO technical report 23173 "Measurement of the thickness and nature of nanoparticle coatings using electron spectroscopies". This technical report deals with those electron spectroscopy methods that are able to determine the coating thickness of nanoparticles. This specifically includes X-ray photoelectron spectroscopy (XPS), energy-resolved X-Ray photoelectron spectroscopy (ERXPS) using synchrotron radiation, near abient pressure photoelectron spectroscopy (NAPXPS) and Auger electron spectroscopy (AES). T2 - 18. Sitzung des DIN-Normenausschusses 062-08-16 AA CY - Berlin, Germany DA - 08.11.2018 KW - Core-shell nanoparticles KW - Electron spectroscopy KW - XPS KW - Synchrotron radiation KW - AES PY - 2018 AN - OPUS4-46550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Anja A1 - Unger, Wolfgang T1 - WP3 (A 3.3.4 / 3.3.5 / 3.3.6) electron spectroscopy of core/shell nanoparticles N2 - The presentation summarizes the progress of activity 3.3.4, 3.3.5 and 3.3.6 of the Innanopart project. These activities focus on the investigation of different core@shell nanoparticles using laboratory-XPS, synchrotron-radiation-XPS and AES. T2 - Innanopart 27 Months Meeting (EMPIR) CY - Berlin, Germany DA - 14.06.2017 KW - AES KW - Core@shell nanoparticles KW - Depth-profiling KW - Synchrotron KW - XPS PY - 2017 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. AN - OPUS4-40874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -