TY - CONF A1 - Agasty, Amit A1 - Warnstedt, P. A1 - Nolde, Moana T1 - Grüne Barrieren N2 - Erprobungen von Grünen Barrieren (Hecken) gegen Detonationswirkungen T2 - Internationales Symposium des BKA für Sprengstoffermittler und Entschärfer CY - Magdeburg, Germany DA - 25.11.2019 KW - Detonation KW - Hecken KW - Druckstoß PY - 2019 AN - OPUS4-50137 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Costard, René A1 - Schwarz, Silke T1 - Application of underwater tests to determine he-equivalents of pyrotechnic substances N2 - A technical-safety evaluation of the detonation effects of pyrotechnic compositions can be performed on the basis of TNT/PETN equivalence. The equivalence determination can be carried out by characterization of the blast wave generated because of detonation in free field tests, which however can be highly resource intensive and prone to uncertainties. Here, we present underwater ‘small-scale’ experiments for the determination of such equivalents. Underwater experiments, as described in the European standard EN 13763-15:2004, are performed to test the capability of detonators to initiate secondary explosives by determining the released energy. At BAM this test was modified to compare the energy output of the pyrotechnic mixtures (those used in air bag gas generators and firework flash compositions) and thus to determine their equivalents of high explosives like TNT or PETN. In the modified tests, small cylindrical copper containers were filled with pyrotechnic substances, which were then attached to standard detonators. This explosive charge assembly was then lowered into a water tank of about 1000 l capacity. At the same depth as the charge assembly, a piezoelectric pressure sensor was immersed in the water at a horizontal distance of about 400 mm from the charge. By recording the time-dependent pressure during the test, the shock energy as well as the energy associated with the expanding gas bubble were determined. T2 - 26th International Symposium on Military Aspects of Blast and Shock (MABS26) CY - Wollongong, Australia DA - 03.12.2023 KW - Underwater Tests KW - TNT/PETN - Equivalent PY - 2023 AN - OPUS4-58928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Costard, René A1 - Rosenbusch, Sjard Mathis A1 - Kadoke, Daniel A1 - Kind, Thomas A1 - Hicke, Konstantin A1 - Hüsken, Götz T1 - Structural behavior and damage assessment of a reinforced concrete wall by various NDT methods and embedded sensors under blast-loading N2 - A safety or security related assessment of explosions, accidental and intentional scenarios alike, often necessitate performance of replication-tests. Such test results are necessary to clarify the causes within the scope of forensic investigations. To gain important insights into the behavior of structures and materials under such loading, field tests may also be performed in accordance with different test standards. To determine the resistance of building-structures after explosions, estimation of the residual load-bearing capacity in addition to the assessment of dynamic structural response and damage to the building components is important. In most cases an evaluation of structural integrity is based only on the visual damage, resulting in an overestimation of the residual capacity. The Bundesanstalt für Materialforschung und -prüfung (BAM) operates the Test site for Technical Safety (TTS) on an area measuring about 12 km2 in the Federal State of Brandenburg for execution of true-to-scale explosion tests. At the TTS, building component testing was performed to assess the suitability of different non-destructive testing methods to characterize the dynamic structural response and damage resulting from the detonation of high explosives. Different blast-loading scenarios were realized by varying the net explosive mass and the standoff distance with all scenarios representing a near-field detonation. The test object was a reinforced concrete wall 2 m high, 2.5 m wide and 20 cm thick, fixed at both vertical edges. The dynamic loading of the wall was characterized with 8 piezoelectric pressure sensors flush-mounted on the front surface, thus measuring the reflected pressures from the shock wave. The tests were conducted with the aim of characterizing the global behavior of the wall under dynamic shock loading and the resulting local damage pattern, respectively. High speed digital image correlation was implemented in combination with multiple acceleration sensors to observe the rear surface of the wall to chart the dynamic deflection during the loading and to determine the residual deformation after the loading had ceased. In addition, one test specimen was instrumented with fiber optic sensor cables, both fixed to the rebars and embedded in the concrete-matrix, respectively. Firstly, these sensors were interrogated during the blast test by a distributed acoustic sensing (DAS) device using a particularly high sampling rate to measure the shock-induced vibrations in the structure with high temporal resolution. This delivers information on dynamics of compression and tension cycles from within the structure. Secondly, the local damage-pattern emerging during the series of blasts was determined via distributed fiber optic strain sensing (DSS) by interrogating the embedded fiber optic sensors with a high spatial resolution DSS device after each blast. This enabled the characterization of non-visual damage to the structure, in particular with regard to the formation of localized cracks in the concrete matrix. The DSS was further complimented by a structure-scanner based on ultrasonic measurements. Our contribution describes this new test approach in detail. Results of the three datasets, namely dynamic shock loading, global behavior of the test object and the local damage pattern will be presented. The suitability of the implemented measurement methods will be discussed in combination with the challenges in their application for technical safety evaluation of building components under explosive loading. T2 - 26th International Symposium on Military Aspects of Blast and Shock (MABS26) CY - Wollongong, Australia DA - 03.12.2023 KW - Blast tests KW - Reflected pressure KW - Embedded sensors KW - Distributed fiber optic sensors KW - Acceleration sensors KW - Digital image correlation KW - Ultrasonic structure-scanner PY - 2023 AN - OPUS4-58927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agasty, Amit A1 - Rosenbusch, Sjard Mathis A1 - Costard, René T1 - Numerical analysis of structures under blast loading N2 - Blast tests are indispensable for investigations of accidental or intentional explosions and to evaluate the level of protection to people and equipment within critical infrastructure. Current capabilities for detailed blast effects assessment are limited to performing full-scale field testing, which, for complex scenarios, are highly resource intensive. In this regard, reliable numerical simulations are an effective alternative option. A discussion of the scope and challenges of using numerical tools for a technical-safety assessment of reinforced concrete structures under blast loading is presented. Different coupling possibilities between shock wave simulations and structural simulations with the help of practical examples is given. An outlook on the development of new methods for structural simulations currently being researched at BAM concludes the presentation. T2 - Exerter Final Conference, 2023 CY - Soest, The Netherlands DA - 24.04.2023 KW - Coupling KW - Numerical Simulation KW - Blast KW - Structural Analysis KW - FSI PY - 2023 AN - OPUS4-57458 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -