TY - JOUR A1 - Geburtig, Anja A1 - Goedecke, Thomas A1 - Wachtendorf, Volker T1 - Combined impact of ultraviolet and chemical fluids on high-density polyethylene packaging material JF - Packaging technology & science N2 - To investigate the ageing behaviour of filled plastic containers outdoors, square cuts of the wall of two high-density polyethylene (HDPE) types were exposed to ultraviolet (UV) radiation at their front side and to specific liquid chemicals (de-ionized water, surfactant or White Spirit) at their back. The UV radiant exposure at the front side was 80 MJ/m². To compare the actions of the different exposures, separate dark backside fluid exposures were performed, in parallel. Besides, UV weathering was carried out until a UV radiant exposure of 325 MJ/m², being roughly comparable to outdoor exposure of one year in Northern Australia. An unpigmented HDPE included in the investigation gave no sufficient protection for the White Spirit. In addition, it showed clear degradation after several of these exposures. In combination with the White Spirit, an increase of carbonyl bonds was measured, presumably assignable to degradation products of the White Spirit. For a pigmented HDPE material, with the implemented combined exposures, no relevant damage was observed, within applied the exposure period. KW - Weathering KW - UV KW - HDPE KW - Packaging PY - 2012 DO - https://doi.org/10.1002/pts.959 SN - 0894-3214 VL - 25 IS - 1 SP - 53 EP - 61 PB - Wiley CY - Chichester, UK AN - OPUS4-25417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Geburtig, Anja A1 - Wachtendorf, Volker T1 - Determination of the spectral sensitivity and temperature dependence of polypropylene crack formation caused by UV-irradiation JF - Polymer degradation and stability N2 - For polypropylene of varied stabilization, spectral sensitivity as well as temperature dependence of irradiation caused crack formation was determined in artificial irradiation tests. UV radiant exposure HUV necessary to generate crack formation was measured both in spectrally dispersed irradiation and artificial irradiation in a Fluorescent UV lamp device. Dependencies were fitted to a plateau function and an Arrhenius function, respectively, to describe the action of irradiation by response functions. Applied to weather data from Phoenix, the results were compared with respective outdoor exposure results. KW - Weathering KW - UV KW - Temperature KW - Numerical simulation PY - 2010 DO - https://doi.org/10.1016/j.polymdegradstab.2010.06.014 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 10 SP - 2118 EP - 2123 PB - Applied Science Publ. CY - London AN - OPUS4-21913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -