TY - JOUR A1 - Bandow, Nicole A1 - Will, Verena A1 - Wachtendorf, Volker A1 - Simon, Franz-Georg T1 - Contaminant release from aged microplastic JF - Environmental Chemistry N2 - Recycled plastic granules of high-density polyethylene, polyvinyl chloride and polystyrene the size of microplastics were exposed to artificial aging conditions (2000 h; photooxidative and thermo-oxidative) to simulate their fate outdoors. Their potential to leach into water during the aging process was investigated using column percolation tests. Aging-related changes on the surface of the material were characterised by IR measurements indicating oxidation reactions with the formation of new adsorption bands (C=O, C–O and OH), especially in the case of photooxidative aging. These findings were confirmed by the identification of leachable organic compounds. Leaching of total organic carbon, Cl, Ca, Cu and Zn is clearly affected by changes due to aging, and their release is increased after photooxidative aging. In general, exposure to photooxidative conditions shows a greater influence on aging and thus on leaching and seems to be the more important mechanism for the aging of microplastic in the environment. Comparison with the total content of inorganic species revealed that, for most elements, less than 3% of the total content is released after 2000 h of photooxidative aging. KW - Column percolation tests KW - Heavy metals KW - Photo-oxidation KW - Thermo-oxidation PY - 2017 DO - https://doi.org/10.1071/EN17064 SN - 1448-2517 SN - 1449-8979 VL - 14 IS - 6 SP - 394 EP - 405 AN - OPUS4-43222 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dümichen, Erik A1 - Braun, Ulrike A1 - Kraemer, R. A1 - Deglmann, P. A1 - Senz, R. T1 - Thermal extraction combined with thermal desorption: A powerful tool to investigate the thermo-oxidative degradation of polyamide 66 materials JF - Journal of analytical and applied pyrolysis N2 - Using thermogravimetric analysis (TGA) with a solid-phase adsorber for thermal extraction, followed by subsequently analysing the adsorber with thermo-desorption gas chromatography mass spectrometry (TDS-GC–MS) enables measurement of polymer degradation under oxidizing atmosphere, and the identification of certain complex hydrocarbon degradation products by chromatographic separation and defined mass patterns. This technique, thermal-extraction desorption gas chromatography mass spectrometry (TED-GC–MS) was used to investigate the thermo-oxidative degradation of PA 66 and PA 66 doped with 2 wt% of metal oxide particles. In TGA pure PA 66 formed more residue under an oxidizing atmosphere than an inert one. In contrast to the measurements under inert atmosphere, several condensed aromatic species containing nitrogen could be identified in thermo-oxidative measurements. These degradation products were formed through condensation reactions of primary amides originating from imide hydrolysis. The formation of such highly condensed species also causes higher char formation. Four metal oxides have shown an impact on the thermo-oxidative degradation of PA 66: Fe2O3 on η-Al2O3 < pure Fe2O3 = Fe2O3 on γ-Al2O3 < pure ZnO. For ZnO even a char-stabilizing effect could be observed. A catalytic effect of these metal oxides causes more condensed cyclopentanone and pyridine derivates. Thus, more water is formed and released, resulting in increased hydrolysis of the imides and degradation at lower temperatures. KW - PA 66 KW - Metal oxide particles KW - Thermo-oxidation KW - Thermogravimetry KW - Solid-phase extraction PY - 2015 DO - https://doi.org/10.1016/j.jaap.2015.08.006 SN - 0165-2370 SN - 1873-250X VL - 115 SP - 288 EP - 298 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -