TY - JOUR A1 - Kannengießer, Thomas A1 - Böllinghaus, Thomas A1 - Neuhaus, M. T1 - Effects of the load history on the residual stress distribution in welded components JF - Welding in the world KW - Loading KW - Residual stresses KW - Stress distribution KW - Influencing factors KW - Practical investigations KW - Measurement KW - Cooling KW - Hardness KW - Mechanical properties KW - Temperature distribution KW - Heat affected zone KW - Weld zone KW - Yield strength KW - Strength KW - Parent material KW - Restraint PY - 2006 SN - 0043-2288 SN - 1878-6669 VL - 50 IS - 7/8 SP - 11 EP - 17 PB - Springer CY - Oxford AN - OPUS4-12516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kannengießer, Thomas A1 - Böllinghaus, Thomas A1 - Neuhaus, Mathias T1 - Effects of the load history on the residual stress distribution in welded components JF - Welding research abroad KW - Loading KW - Residual stresses KW - Stress distribution KW - Influencing factors KW - Practical investigations KW - Measurement KW - Cooling KW - Hardness KW - Mechanical properties KW - Temperature distribution KW - Heat affected zone KW - Weld zone KW - Yield strength KW - Strength KW - Parent material KW - Restraint PY - 2008 SN - 0043-2318 VL - 54 IS - 1 SP - 1 EP - 7 PB - Welding Research Council CY - New York, NY AN - OPUS4-17333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Winterkorn, René A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Build-up strategies for temperature control using laser metal deposition for additive manufacturing JF - Welding in the World N2 - The track geometry created with laser metal deposition (LMD) is influenced by various parameters. In this case, the laser power has an influence on the width of the track because of an increasing energy input. A larger melt pool is caused by a rising temperature. In the case of a longer welding process, there is also a rise in temperature, resulting in a change of the track geometry. This paper deals with the temperature profiles of different zigzag strategies and spiral strategies for additive manufacturing. A two-color pyrometer is used for temperature measurement on the component surface near the melt pool. Thermocouples measure the temperatures in deeper regions of a component. The welds are located in the center and in the edge area on a test part to investigate the temperature evolution under different boundary conditions. The experiments are carried out on substrates made from mild steel 1.0038 and with the filler material 316L. The investigations show an influence on the temperature evolution by the travel path strategy as well as the position on the part. This shows the necessity for the development and selection of build-up strategies for different part geometries in additive manufacturing by LMD. KW - Laser welding KW - Clad steels KW - Temperature distribution KW - Heat flow KW - Laser surfacing PY - 2018 DO - https://doi.org/10.1007/s40194-018-0604-8 SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 5 SP - 1073 EP - 1081 PB - Springer AN - OPUS4-45773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, X. A1 - Shi, L. A1 - Wu, C. A1 - Yang, Chunliang A1 - Gao, S. T1 - Multi-phase modelling of heat and mass transfer during Ti/Al dissimilar friction stir welding process JF - Journal of Manufacturing Processes N2 - Friction stir welding (FSW) has the capacity to join the Al/Ti dissimilar structures with superior mechanical properties. The microstructures and mechanical characteristics of Al/Ti dissimilar FSW joints are determined by the heat and mass transfer during the welding process. However, a quantitative study of the Al/Ti dissimilar FSW process is lacking. Therefore, using the computational fluid dynamics (CFD) and volume of fluid (VOF) approach, a multi-phase model was constructed for quantitatively analyzing the heat and mass transfer behaviour in dissimilar FSW of TC4 titanium alloy and AA2024-T4 aluminium alloy. The mixed material was treated as a functionally graded material (FGM) to compute the thermophysical characteristics at the weld nugget zone (WNZ). Due to the vast disparity in the thermophysical characteristics of aluminum and titanium alloy, the temperature field in Al/Ti dissimilar FSW was severely asymmetric. The temperature of titanium alloy on the advancing side (AS) was higher than that of aluminium alloy on the retreating side (RS) at the same distance from the tool centre line near the tool shoulder, but it was lower than that of aluminium alloy on the RS without the influence of the shoulder. Due to the high flow stress of titanium alloy, plastic material flow mostly occurred on the RS of aluminium alloy in the Al/Ti dissimilar FSW, with its percentage exceeding 80%. This model was validated by experiment results. KW - Dissimilar friction stir welding KW - Al/Ti dissimilar joints KW - Temperature distribution KW - Heat generation KW - Plastic material flow PY - 2023 DO - https://doi.org/10.1016/j.jmapro.2023.03.037 SN - 2212-4616 VL - 94 SP - 240 EP - 254 PB - Elsevier Ltd. AN - OPUS4-57265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -