TY - JOUR A1 - Kraffert, K. A1 - Karg, M. A1 - Schmack, R. A1 - Clavel, G. A1 - Boissiere, C. A1 - Wirth,, Thomas A1 - Pinna, N. A1 - Kraehnert, R. T1 - Stabilization of Mesoporous Iron Oxide Films against Sintering and Phase Transformations via Atomic Layer Deposition of Alumina and Silica JF - Advanced materials interfaces N2 - The stabilization of crystal phases and nanostructured morphologies is an essential topic in application-driven design of mesoporous materials. Many applications, e.g. catalysis, require high temperature and humidity. Typical metal oxides transform under such conditions from a metastable, low crystal-line material into a thermodynamically more favorable form, i.e. from ferrihy-drite into hematite in the case of iron oxide. The harsh conditions induce also a growth of the crystallites constituting pore walls, which results in sintering and finally collapse of the porous network. Herein, a new method to stabi-lize mesoporous templated metal oxides against sintering and pore collapse is reported. The method employs atomic layer deposition (ALD) to coat the internal mesopore surface with thin layers of either alumina or silica. The authors demonstrate that silica exerts a very strong influence: It shifts hematite formation from 400 to 600 °C and sintering of hematite from 600 to 900 °C. Differences between the stabilization via alumina and silica are rationalized by a different interaction strength between the ALD material and the ferrihydrite film. The presented approach allows to stabilize mesoporous thin films that require a high crystallization temperature, with submonolayer quantity of an ALD material, and to apply mesoporous materials for high temperature applications. KW - Mesoporous oxides KW - Atomic layer deposition KW - Stabilization PY - 2018 DO - https://doi.org/10.1002/admi.201800360 VL - 5 IS - 14 SP - 1800360-1 EP - 1800360-9 PB - Wiley-VCH AN - OPUS4-47869 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Werner A1 - Jakob, Ines A1 - Tatzky-Gerth, Renate A1 - Wöhlecke, Andreas T1 - A Study on antioxidant depletion and degradation in polyolefin based geosynthetics: sacrificial versus regenerative stabilization JF - Polymer engineering and science N2 - Plastic products used in geotechnical engineering, so-called geosynthetics, are often made of polyolefins (polyethylene or polypropylene) and stabilized against oxidative degradation by antioxidants (AO). Three types of AO “packages” are used: (P1) phenols and phosphites/sulfides, (P2) hindered amines (HAS) with a marginal stabilization P1 of the basic resin, (P3) a combination of packages P1 and P2 with comparable amounts of phenol and HAS. We report about long-lasting oven aging and water immersion tests at 80 °C of 29 different polyolefin based products (geomembranes, geonets and geotextiles). Pronounced differences in the degradation behavior were found depending solely on the type of AO package. In case of P1, the oxidative degradation is prevented by the AO. Autocatalytic oxidation only begins after depletion of AO and may lead to catastrophic failure depending on the environmental conditions. In case of P2, degradation starts right from the beginning. However, it is decelerated and proceeds gradually. In case of P3, the degradation behavior seems to be a superposition of the characteristics obtained for P1 and P2. Plotting the fractional loss of the AO in P1 and P2 as function of the square root of aging time, we identified two regimes of AO depletion. We suggest to attribute this observation to the different mechanisms of AO depletion. KW - Geosynthetics KW - Oxidation KW - Antioxidant KW - Stabilization PY - 2016 DO - https://doi.org/10.1002/pen.24199 SN - 0032-3888 VL - 56 IS - 2 SP - 129 EP - 142 PB - John Wiley & Sons CY - New York AN - OPUS4-35630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pretsch, Thorsten A1 - Müller, Werner T1 - Shape memory poly(ester urethane) with improved hydrolytic stability JF - Polymer degradation and stability N2 - In two hydrolytic degradation studies the tensile (mechanical) and functional (thermo-mechanical) properties of a hydrolysis-stabilized shape memory poly(ester urethane) and its non-stabilized analog were investigated. Hydrolytic degradation was enforced by specimen immersion in de-ionized water at 80 °C. Significant differences in the fundamental shape memory parameters were monitored as function of aging time for the stabilized and non-stabilized polymer. This included the ability to recover strain (shape recoverability) and stress (stress recoverability) on heating after shape programming. Hydrolysis-related mechanical and functional changes were correlated with morphological ones, detected by differential scanning calorimetry (DSC). The shape memory poly(ester urethane), which was protected by a carbodiimide-based hydrolysis stabilizer, revealed significantly improved resistance towards hydrolysis with respect to various mechanical and shape memory parameters. KW - Shape memory polymers KW - Hydrolytic degradation KW - Stabilization KW - Thermo-mechanical properties KW - Poly(ester urethane) KW - Active polymers PY - 2010 DO - https://doi.org/10.1016/j.polymdegradstab.2009.12.020 SN - 0141-3910 SN - 1873-2321 VL - 95 IS - 5 SP - 880 EP - 888 PB - Applied Science Publ. CY - London AN - OPUS4-21270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -