TY - JOUR A1 - Madkour, Sherif A1 - Szymoniak, Paulina A1 - Hertwig, Andreas A1 - Heidari, M. A1 - von Klitzing, R. A1 - Napolitano, S. A1 - Sferrazza, M. A1 - Schönhals, Andreas T1 - Decoupling of dynamic and thermal glass transition in thin films of a PVME/PS blend JF - ACS Macro Letters N2 - The discussions on the nanoconfinement effect on the glass transition and glassy dynamics phenomena have yielded many open questions. Here, the thickness dependence of the thermal glass transition temperature of thin films of a PVME/PS blend is investigated by ellipsometry. Its thickness dependence was compared to that of the dynamic glass transition (measured by specific heat spectroscopy), and the deduced Vogel temperature (T0). While and T0 showed a monotonous increase, with decreasing the film thickness, the dynamic glass transition temperature () measured at a finite frequency showed a non-monotonous dependence that peaks at 30 nm. This was discussed by assuming different cooperativity length scales at these temperatures, which have different sensitivities to composition and thickness. This non-monotonous thickness dependence of disappears for frequencies characteristic for T0. Further analysis of the fragility parameter, showed a change in the glassy dynamics from strong to fragile, with decreasing film thickness. KW - Thin polymeric films KW - Ellipsometry KW - Specific heat spectroscopy PY - 2017 DO - https://doi.org/10.1021/acsmacrolett.7b00625 SN - 2161-1653 VL - 6 IS - 10 SP - 1156 EP - 1161 PB - ACS Publications AN - OPUS4-42266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nikitin, D. A1 - Madkour, Sherif A1 - Pleskunov, P A1 - Tafiichuk, R A1 - Shelemin, A A1 - Hanus, J A1 - Gordeev, I A1 - Sysolyatina, E A1 - Ermolaeva, S A1 - Titov, V A1 - Schönhals, Andreas A1 - Choukourov, A T1 - Cu nanoparticles constrain segmental dynamics of crosslinked polyethers: a trade -off between non-fouling and antibacterial properties JF - Soft Matter N2 - Copper has a strong bactericidal effect against multi-drug resistant pathogens and polyethers are known for their resistance to biofilm formation. Herein, we combined Cu nanoparticles (NPs) and a polyether Plasma polymer in the form of nanocomposite thin films and studied whether both effects can be coupled. Cu NPs were produced by magnetron sputtering via the aggregation in a cool buffer gas whereasolyether layers were synthesized by Plasma-Assisted Vapor Phase Deposition with poly(ethylene oxide) (PEO) used as a precursor. In situ specific heat spectroscopy and XPS analysis revealed the formation of a modified polymer layer around the NPs which propagates on the scale of a few nanometers from the Cu NP/polymer interface and then transforms into a bulk polymer phase. The chemical composition of the modified layer is found to be ether-deficient due to the catalytic influence of copper whereas the bulk polymer Phase exhibits the chemical composition close to the original PEO. Two cooperative glass transition phenomena are revealed that belong to the modified polymer layer and the bulk phase. The former is characterized by constrained mobility of polymer segments which manifests itself via a 30 K increase of dynamic glass transition temperature. Furthermore, the modified layer is characterized by the heterogeneous structure which results in higher fragility of this layer as compared to the bulk phase. The Cu NPs/polyether thin films exhibit reduced Protein adsorption; however, the constrained segmental dynamics leads to the Deterioration of the non-fouling properties for ultra-thin polyether coatings. The films are found to have a bactericidal effect against multi-drug resistant Gram-positive Methicillin-Resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa. KW - Nanocomposites KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1039/c8sm02413h VL - 15 IS - 13 SP - 2884 EP - 2896 PB - RSC AN - OPUS4-47765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Madkour, Sherif A1 - Schönhals, Andreas T1 - Molecular dynamics of the asymmetric blend PVME/PS revisited by broadband dielectric and specific heat spectroscopy: Evidence of multiple glassy dynamics JF - Macromolecules N2 - The molecular mobility of the highly asymmetric miscible blend poly(vinyl methyl ether)/polystyrene was investigated by broadband dielectric (frequency range 10^-1 Hz – 10^9 Hz) and specific heat spectroscopy (frequency range 10^1 Hz – 10^4 Hz). The dielectric spectra revealed a complex molecular dynamic behavior, where three different relaxation processes were observed. At temperatures below the glass transition temperature an α´-relaxation was found, with an Arrhenius-like temperature dependence of its relaxation rates. It is assigned to localized fluctuations of the confined PVME segments within a frozen glassy matrix dominated by PS. Above the thermal glass transition temperature two processes with a VFT behavior of their relaxation rates were detected called α1- and α2-relaxation, both originating from PVME dipoles fluctuating in PS-rich environments, however with diverse PS concentrations. The relevant length scales for the processes are assumed to be different, corresponding to the Kuhn segment length for the former relaxation and to the CRR for the latter one. The observed multiple glassy dynamics result from spatial local compositional heterogeneities on a microscopic level. Additionally, SHS investigations were performed for the first time for this system, proving an existence of a fourth relaxation process (α3-relaxation) due to the cooperative fluctuations of both PS and PVME segments. The separation between the thermal α3- and dielectric α2-relaxation increases dramatically with increasing polystyrene concentration, proving that the thermal response is dominated by PS. KW - Polymer blends KW - Dynamic heterogeneity KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1021/acs.macromol.8b02697 SN - 0024-9297 VL - 52 IS - 4 SP - 1620 EP - 1631 PB - ACS Publications AN - OPUS4-47516 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yildirim, Arda A1 - Bühlmeyer, A. A1 - Hayash, S A1 - Haenle, J. C. A1 - Sentker, K. A1 - Krause, Christina A1 - Huber, Patrick A1 - Laschat, Sabine A1 - Schönhals, Andreas T1 - Multiple glassy dynamics in dipole functionalized triphenylene-based discotic liquid crystals revealed by broadband dielectric spectroscopy and advanced calorimetry – assessment of the molecular origin JF - Physical Chemistry Chemical Physics N2 - A selected series of dipole functionalized triphenylene-based discotic liquid crystals (DLCs) was synthesized and investigated in a systematic way to reveal the phase behavior and molecular dynamics. The later point is of particular importance to understand the charge transport in such systems which is the key property for their applications such as organic field-effect transistors, solar cells or as nanowires in molecular electronics, and also to tune the properties of DLCs. The mesomorphic properties were studied by polarizing optical microscopy, X-ray diffraction, and differential scanning calorimetry, which were compared to the corresponding unfunctionalized DLC. The molecular dynamics were investigated by a combination of state-of-the-art broadband dielectric spectroscopy (BDS) and advanced calorimetry such as fast scanning calorimetry (FSC) and specific heat spectroscopy (SHS). Besides localized fluctuations, surprisingly multiple glassy dynamics were detected for all materials for the first time. Glassy dynamics were proven for both processes unambiguously due to the extraordinary broad frequency range covered. The a1-process is attributed to fluctuations of the alky chains in the intercolumnar space because a polyethylene-like glassy dynamics is observed. This corresponds to a glass transition in a confined three-dimensional space. The a2-process found at temperatures lower than a1-process, is assigned to small scale rotational and/or translational in plane fluctuations of the triphenylene core inside distorted columns. This can be considered as a glass transition in a one-dimensional fluid. Therefore, obtained results are of general importance to understand the glass transition, which is an unsolved problem of condensed matter science. KW - Discotic Liquid Crystals KW - Broadband dielectric spectroscopy KW - Flash DSC KW - Specific heat spectroscopy PY - 2019 DO - https://doi.org/10.1039/c9cp03499d SN - 1463-9076 VL - 21 IS - 33 SP - 18265 EP - 18277 PB - RSC AN - OPUS4-48739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Calorimetric glass transition of ultrathin poly(vinyl methyl ether) films JF - Polymer N2 - Specific heat spectroscopy in the frequency range typically from 1 Hz to 1 kHz with a sensitivity of pJ/K was employed to study the glass transition behavior of ultrathin poly(vinyl methyl ether) (PVME) films with thicknesses ranging from 218 nm down to 12 nm. The amplitude and the phase angle of the complex differential voltage as a measure of the complex heat capacity were obtained as a function of temperature at a given frequency simultaneously. Both spectra are used to determine the dynamic glass transition temperature as a function of both the frequency and the film thickness. As main result no thickness dependence of the dynamic glass transition temperature was observed down to a film thickness of 12 nm within the experimental uncertainty of ±2 K. Further the width of the glass transition is independent of the film thickness which indicates that the extent of the cooperativity is essentially smaller than 12 nm. KW - Specific heat spectroscopy KW - Dynamic glass transition KW - Poly(vinyl methyl ether) PY - 2013 DO - https://doi.org/10.1016/j.polymer.2013.02.025 SN - 0032-3861 SN - 1873-2291 VL - 54 IS - 8 SP - 2067 EP - 2070 PB - Springer CY - Berlin AN - OPUS4-28011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -