TY - JOUR A1 - Kipphardt, Heinrich A1 - Aregbe, Y. A1 - Valkiers, S. A1 - Norgaard, J. A1 - De Bièvre, P. A1 - Taylor, P.D.P. A1 - Poths, J. T1 - A primary isotopic gas standard for krypton with values for isotopic composition and molar mass traceable to the Système International d'Unités JF - International Journal of Mass Spectrometry N2 - Isotope amount ratios of krypton were measured on subsamples from one large batch of high purity krypton separated from the atmosphere. Synthetic mixtures of enriched krypton isotopes were used to “calibrate” the measurements with small uncertainties. The result is a primary isotopic gas standard (PIGS) IRMM-2030 with certified values for isotope ratios, isotopic composition, and molar mass of krypton with small combined uncertainties uc, evaluated according to the ISO/BIPM Guide (GUM). It is commercially available from IRMM-Geel or from MESSER (Duisburg, D). The certified krypton isotope amount ratios in the PIGS IRMM-2030 are as follows: n(78Kr)/n(84Kr)=0.006 232 5(55), n(80Kr)/n(84Kr)=0.040 107(17), n(82Kr)/n(84Kr)=0.203 43(12), n(83Kr)/n(84Kr)=0.201 79(11), and n(86Kr)/n(84Kr)=0.303 205(59) with expanded uncertainty U=kuc and coverage factor k=2. The molar mass of Kr in this sample is M(Kr)=83.798 02(16) g/mol. These values are in good agreement with published measurements of atmospheric krypton but have smaller combined uncertainties and are “calibrated” by means of synthetic isotope mixtures. The values of the PIGS are traceable to the SI. Measurements of isotope amount ratios of krypton in other samples can be linked to SI using this PIGS. KW - Molar mass KW - Isotopic composition KW - Primary isotopic gas standard KW - Gas isotope mass spectrometry KW - Isotope amount ratio KW - Traceability KW - SI KW - Krypton PY - 2001 DO - https://doi.org/10.1016/S1387-3806(00)00397-3 SN - 0168-1176 SN - 0020-7381 SN - 1387-3806 SN - 1873-2798 VL - 206 SP - 129 EP - 136 PB - Elsevier CY - Amsterdam AN - OPUS4-1087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, P. A1 - Panne, Ulrich A1 - Traub, Heike A1 - Pfeifer, Jens A1 - Vogl, Jochen T1 - Quantification of sulphur in copper and copper alloys by GDMS and LA-ICP-MS, demonstrating metrological traceability to the international system of units JF - Journal of Analytical Atomic Spectrometry N2 - The quantification of the sulphur mass fraction in pure copper and copper alloys by GDMS and LA-ICP-MS revealed a lack of traceability mainly due to a lack of suitable certified reference materials for calibrating the instruments. Within this study GDMS and LA-ICP-MS were applied as routine analytical tools to quantify sulphur in copper samples by applying reference materials as calibrators, which were characterized for their sulphur mass fraction by IDMS beforehand. Different external calibration strategies were applied including a matrix cross type calibration. Both techniques with all calibration strategies were validated by using certified reference materials (others than those used for calibration) and good agreement with the reference values was achieved except for the matrix cross type calibration, for which the agreement was slightly worse. All measurement results were accompanied by an uncertainty statement. For GDMS, the relative expanded (k = 2) measurement uncertainty ranged from 3% to 7%, while for LA-ICP-MS it ranged from 11% to 33% when applying matrix-matched calibration in the sulphur mass fraction range between 25 mg kg-1 and 1300 mg kg-1. For cross-type calibration the relative expanded (k = 2) measurement uncertainty need to be increased to at least 12% for GDMS and to at least 54% for LA-ICP-MS to yield metrological compatibility with the reference values. The so obtained measurement results are traceable to the international system of units (SI) via IDMS reference values, which is clearly illustrated by the unbroken chain of calibrations in the metrological traceability scheme. KW - Sulfur KW - Copper KW - GDMS KW - LA-ICP-MS KW - Uncertainty KW - Traceability KW - SI PY - 2021 DO - https://doi.org/10.1039/d1ja00137j SN - 0267-9477 VL - 36 IS - 11 SP - 2404 EP - 2414 PB - Royal Society of Chemistry AN - OPUS4-53412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pramann, A. A1 - Vogl, Jochen A1 - Rienitz, O. T1 - The Uncertainty Paradox: Molar Mass of Enriched Versus Natural Silicon Used in the XRCD Method JF - MAPAN - Journal of Metrology Society of India N2 - The X-ray crystal density method uses silicon spheres highly enriched in 28Si as a primary method for the dissemination of the SI base unit kilogram yielding smallest possible uncertainties associated with the mass m within a few parts in 10-8. This study compares different available and newly developed analytical methods and their results for the determination of the molar mass M of silicon highly enriched in 28Si (Me) and of silicon (Mx) with an almost natural isotopic distribution. While for Me relative uncertainties urel(Me) in the lower 10-9 range are obtained routinely, it was not possible to fall below a value of urel(Mx) < 4 x 10-6 in the case of natural silicon, which is approximately three orders of magnitude larger. The application of the state-of the-art isotope ratio mass spectrometry accompanied with sophisticated thoroughly investigated methods suggests an intrinsic cause for the large uncertainty associated with the molar mass of natural silicon compared to the enriched material. KW - silicon KW - Molar mass KW - Isotope ratios KW - SI KW - Kilogram KW - Mole KW - XRCD method PY - 2020 DO - https://doi.org/10.1007/s12647-020-00408-y VL - 35 SP - 499 EP - 510 PB - Springer Verlag AN - OPUS4-51637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -