TY - JOUR A1 - Agea Blanco, Boris A1 - Meyer, Christian A1 - Müller, Ralf A1 - Günster, Jens T1 - Sand erosion of solar glass: Specific energy uptake, total transmittance, and module efficiency N2 - Surface roughness, R Z , normal transmittance, Τ N , total transmittance, Τ T , and photovoltaic (PV) module efficiency, η S , were measured for commercial solar glass plates and PV test modules identically sandblasted with different loads of quartz sand (200 – 400 μ m), impact inclination angles, and sand particle speed. Measured data are presented versus the specific energy uptake during sand blasting, E (J/m2). Cracks, adhering particles, and scratch ‐ like textures probably caused by plastic flow phenomena could be observed after sand blasting. Their characteristic size was much smaller than that of sand particles. After blasting and subsequent cleaning, the glass surface was still covered with adhering glass particles. These particles, cracks, and scratch ‐ like textures could not be removed by cleaning. For sand blasting with α = 30° inclination angle and E = 30 000 J/m2, normal transmittance, total transmittance, and relative module efficiency decreased by 29%, 2% and ∽ 2%, respectively. This finding indicates that diffusive transmission of light substantially contributes to PV module efficiency and that the module efficiency decrease caused by sand erosion can be better estimated from total than by normal transmittance measurements. KW - Transmittance KW - Efficiency KW - Photovoltaic modules KW - Roughness KW - Sand blasting PY - 2018 DO - https://doi.org/10.1002/er.3930 SN - 1099-114X SN - 0363-907X VL - 42 IS - 3 SP - 1298 EP - 1307 PB - Wiley & Sons, Ltd. AN - OPUS4-44157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Tobias, Charlie A1 - Hülagü, Deniz A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Toward determination of the surface roughness of particles from a SEM image N2 - In this communication, we address the issue of roughness measurement by investigating if the grayscale values from SEM images can be used for surface roughness determination of spherical particles. KW - MamaLoCA KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - Particle characterisation KW - Roughness PY - 2021 DO - https://doi.org/10.1017/S1431927621011375 SN - 1431-9276 SN - 1435-8115 VL - 27 IS - Suplement S1 SP - 3302 EP - 3305 PB - Cambridge University Press CY - New York, NY AN - OPUS4-53283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Generalized Analysis Approach of the Profile Roughness by Electron Microscopy with the Example of Hierarchically Grown Polystyrene–Iron Oxide–Silica Core–Shell–Shell Particles N2 - The roughness as a property of core–shell (CS) microparticles plays a key role in their functionality. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task with approaches using electron microscopy images being scarce and showing pronounced differences in terms of methodology and results. This work presents a generalized method for the reliable roughness determination of nonplanar specimens such as CS particles from electron microscopic images, the method being robust and reproducible with a high accuracy. It involves a self-written software package (Python) that analyzes the recorded images, extracts corresponding data, and calculates the roughness based on the deviation of the identified contour. Images of single particles are taken by a dual mode scanning electron microscopy (SEM) setup which permits imaging of the same field-of-view of the sample with high resolution and surface sensitive in SE InLens mode as well as in transmission mode (TSEM). Herein, a new type of polystyrene core–iron oxide shell–silica shell particles is developed to serve as a set of lower micrometer-sized study objects with different surface roughness; the analysis of their images by the semiautomatic workflow is demonstrating that the particles’ profile roughness can be quantitatively obtained. KW - Core–shell particles KW - Image analysis KW - Nanoparticles KW - Roughness KW - SEM KW - transmission mode PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542576 DO - https://doi.org/10.1002/adem.202101344 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - From 2D and Single Particle to 3D and Batch Analysis as a Routine Quality Check Procedure for the Morphological Characterization of Core-Shell Microparticles N2 - CS particles show unique properties by merging individual characteristics of the core and the shell materials. An alteration particularly in their surface roughness affects the final performance of the particles in the targeted application. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task employing microscopic techniques being scarce and showing large differences in terms of methodology and results. In our previous work, we have reported a systematic study with a reliable analysis tool, which evaluates profile roughness quantitatively, for individual core-shell microparticles using electron microscopy (EM) images of both types, Scanning Electron Microscopy (SEM) and transmission mode SEM (or TSEM). The SEM images contain two-dimensional (2D) information, therefore, provide profile roughness data only from the projection in the horizontal plane (in other words, from the “belly”) of a spherical particle. The present study offers a practical procedure to give access to more information by tilting the sample holder and hence allowing images of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, extended information on surface roughness of the particle can be extracted. Thus, instead of obtaining 2D information from a single SEM image, three-dimensional (3D) information is obtained from 2D projections recorded at different particle orientations. T2 - Microscopy and Microanalysis 2022 CY - Oregon, Portland, USA DA - 31.07.2022 KW - Core-shell particles KW - Image processing KW - Roughness KW - Scanning electron microscopy KW - Tilting PY - 2022 DO - https://doi.org/10.1017/S1431927622002094 SN - 1431-9276 VL - 28 IS - S1 SP - 332 EP - 334 PB - Cambridge University Press AN - OPUS4-55373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Analysis of the profile roughness of core-shell microparticles by electron microscopy N2 - A particle roughness analysis tool, based on electron microscopy images (SEM and TEM). The influence of various parameters on the calculated roughness was also investigated: the setting of the proper threshold, accelerating voltage, etc. The samples were gradually tilted to extend imaging information of more than only one projection. Furthermore, the measurement uncertainty of the profile roughness of particles associated to various orientations was estimated. KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - MamaLoCa KW - Particle Characterization KW - Roughness PY - 2021 DO - https://doi.org/10.1017/S1431927621007285 VL - 27 IS - Suppl. 1 SP - 2002 EP - 2004 PB - Cambridge University Press AN - OPUS4-53123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimmari, E. A1 - Podgursky, V. A1 - Simunin, M. A1 - Adoberg, E. A1 - Surzenkov, A. A1 - Viljus, M. A1 - Hartelt, Manfred A1 - Wäsche, Rolf A1 - Sildos, I. A1 - Kulu, P. T1 - Tribological behavior of carbon nanofibers deposited on hard nanocomposite (nc-Ti1 - xAlxN)/(a-Si3N4) coating N2 - Main focus was on the deposition of carbon nanofibers (CNFs) onto the hard nanocomposite (nc-Ti1 - xAlxN)/(a-Si3N4) (nACo®) coating surface and the investigation of the structure and tribological properties of CNFs. The alcohol chemical vapor deposition (ACCVD) method was employed to prepare CNFs and the deposition temperatures were 600 and 700 °C, respectively. Prior to the CNF deposition, Ni catalyst was deposited onto the nACo® surface using the magnetron sputtering. The influence of the deposition temperature on the carbon nanofibers structure was investigated by Raman spectroscopy and scanning electron microscopy (SEM). The higher order degree of CNF structure is observed with increasing deposition temperature. Tribological tests were carried out under fretting contact conditions against Al2O3 ball. It is shown that the coefficient of friction (COF) decreases from 1.0 to 1.2 for the clean nACo® surface to 0.2–0.4 for the CNF layers deposited on the nACo® surface. The roughness of the nACo® surface was varied and a higher durability of the CNF layers deposited on the rougher nACo® surface is found. KW - Carbon nanofiber KW - Coating KW - Fretting KW - Roughness KW - Solid lubrication PY - 2013 DO - https://doi.org/10.1016/j.surfcoat.2013.03.011 SN - 0257-8972 VL - 225 SP - 21 EP - 25 PB - Elsevier Science CY - Lausanne AN - OPUS4-32978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kloß, Heinz A1 - Marwitz, Christian A1 - Breitkreiz, Maxim T1 - Reibung - eine mehrskalige Beschreibung unter Berücksichtigung von Modellbetrachtungen, experimentellen Ergebnissen und Simulationsrechnungen KW - Reibung KW - Adhäsion KW - Deformation KW - Rauheit KW - Simulation KW - Reaktionsschicht KW - Friction KW - Adhesion KW - Roughness KW - Reaction layer PY - 2010 SN - 0724-3472 VL - 57 IS - 6 SP - 14 EP - 18 PB - Expert Verlag CY - Renningen AN - OPUS4-23356 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kovalev, Alexander A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Wäsche, Rolf A1 - Woydt, Mathias T1 - Zero wear (Null Verschleiß) KW - Reibung KW - Null-Verschleiß KW - Rauhigkeit KW - Kontaktmechanik KW - Modellierung KW - DLC KW - Friction KW - Zero-wear KW - Roughness KW - Contact mechanics KW - Simulation PY - 2013 SN - 0724-3472 VL - 60 IS - 2 SP - 5 EP - 12 PB - Expert Verlag CY - Renningen AN - OPUS4-28979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Manuel A1 - Spaltmann, Dirk A1 - Binkowski, Sigrid A1 - Santner, Erich A1 - Woydt, Mathias T1 - In situ Acoustic Emission for wear life detection of DLC coatings during slip-rolling friction N2 - Different diamond-like carbon (DLC) coatings on a steel substrate (100Cr6) were tested under slip-rolling friction conditions against uncoated counter bodies of the same steel. The initial maximum Hertzian pressure was varied in a range of P0 = 1.5–2.3 GPa. The friction tests were carried out under dry conditions and with an unadditivated paraffin oil as lubricant. It could be shown that the thickness of the coatings affects the respective wear life. Further, a very important factor for the wear life of a coating under lubricated slip-rolling conditions is the roughness of the surface of the respective counterbody. The wear life tests were monitored by recording in situ the Acoustic Emission (AE) signals. Some causes for a high AE activity could be identified. KW - Wear life KW - Slip-rolling friction KW - Diamond-like carbon (DLC) KW - Acousitc Emission KW - Lubircation KW - Roughness PY - 2006 DO - https://doi.org/10.1016/j.wear.2005.03.009 SN - 0043-1648 VL - 260 IS - 4-5 SP - 469 EP - 478 PB - Elsevier CY - Amsterdam AN - OPUS4-12064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meine, Kerstin A1 - Kloß, K. A1 - Schneider, Thomas A1 - Spaltmann, Dirk T1 - The influence of surface roughness on the adhesion force N2 - Adhesion measurements are presented which were carried out with an atomic force microscope between polymer balls attached to a cantilever and a silicon wafer under ultra high vacuum conditions. In using a silicon surface with a defined structure a correlation between adhesion force and contact area was found. This correlation could partly be explained by the Johnson-Kendall-Roberts model, if a change of the surface energy is assumed as a result of the structuring. For a constant geometric contact area an additional structuring leads to a decrease of the adhesion force. T2 - 10th European Conference on Applications of Surface and Interface Analysis (ECASIA '03) CY - Berlin DA - 2003-10-05 KW - Roughness KW - Adhesion KW - AFM KW - UHV KW - JKR model KW - Surface energy PY - 2004 DO - https://doi.org/10.1002/sia.1738 SN - 0142-2421 SN - 1096-9918 VL - 36 IS - 8 SP - 694 EP - 697 PB - Wiley CY - Chichester AN - OPUS4-4708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -