TY - JOUR A1 - Broomfield, J. A1 - Fischer, Joachim A1 - Mietz, Jürgen A1 - Schneck, U. T1 - Case studies N2 - In this paper, some quite different survey tasks are described, and it can be seen that corrosion surveys will follow a certain scheme of data acquisition (first NDT measurements, than detailed testing on suspect areas), but the individual scope of on-site measurements may have a vast variety according to the local circumstances, and the interpretation always has to refer to a wider set of information than the data readings only. KW - Corrosion surveys KW - Non-destructive testing KW - Reinforcement KW - Concrete KW - Potential mapping KW - Corrosion PY - 2013 DO - https://doi.org/10.1002/maco.201206649 SN - 0947-5117 SN - 1521-4176 VL - 64 IS - 2 SP - 147 EP - 160 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-29730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Böhning, Martin A1 - Krafft, Bernd A1 - Schartel, Bernhard T1 - Multilayer graphene chlorine isobutyl isoprene rubber nanocomposites: influence of the multilayer graphene concentration on physical and flame-retardant properties N2 - In recent years, different nanoparticles have been proposed and successfully introduced as nanofillers in rubber nanocomposites. In this study, multilayer graphene (MLG) is proposed as a nanoparticle that functions efficiently at low concentrations. MLG consists of just 10 or so graphene sheets. Chlorine isobutyl isoprene rubber (CIIR)/MLG nanocomposites with different MLG loadings were prepared using an ultrasonically assisted solution mixing procedure followed by two-roll milling. The incorporation of MLG provides a clear improvement in the rheological, mechanical, curing, and gas barrier properties of the nanocomposites. Adding only 3 phr ofMLGto CIIR increased the Young’s modulus by more than two times and reduced the permeability ofO2 andCO2 by 30%. Higher nanofiller concentrations yielded further improvement in the properties of the nanocomposites. Moreover, CIIR/MLG nanocomposites showed reduced flammability. KW - Graphene KW - Rubber KW - Nanocomposites KW - Flammability KW - Reinforcement PY - 2016 DO - https://doi.org/10.5254/rct.15.84838 SN - 0035-9475 VL - 89 IS - 2 SP - 316 EP - 334 AN - OPUS4-37595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maierhofer, Christiane A1 - Zacher, Gerhard A1 - Kohl, Christoph A1 - Wöstmann, Jens T1 - Evaluation of Radar and Complementary Echo Methods for NDT of Concrete Elements N2 - Non-destructive testing (NDT) of concrete structures plays an increasing role in civil engineering. This paper presents the results of systematic measurements carried out in the laboratory at BAM and on-site at several bridges using reconstructed and fused radar and ultrasonic echo data sets. For investigating the influence of concrete mixture, radar and ultrasonic measurements were performed at test specimens consisting of concrete mixtures with different pore content and distribution as well as with steel fibres. Further, it is demonstrated how the fusion of data sets recorded with different methods at the same structure (here: concrete bridges) enhances the information content in the fused data set. Different approaches for data fusion algorithms are discussed. The results of these investigations show the high potential of reconstruction and data fusion for the improvement and simplification of the interpretability of large data sets measured with impulse-echo methods. The presented results are based on the research project FOR384 funded by the DFG (Deutsche Forschungsgemeinschaft). KW - Radar KW - Ultrasonic KW - Data fusion KW - Pixel level KW - Evidence theory KW - Concrete KW - Bridges KW - Reinforcement KW - Pores KW - Steel fibres PY - 2008 DO - https://doi.org/10.1007/s10921-008-0030-8 SN - 0195-9298 SN - 1573-4862 VL - 27 IS - 1-3 SP - 47 EP - 57 PB - Plenum Press CY - New York, NY AN - OPUS4-17711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Poltavtseva, Marina A1 - Ebell, Gino A1 - Mietz, Jürgen T1 - Electrochemical investigations of carbon-based conductive coatings for application as anodes in ICCP systems of reinforced concrete structures N2 - Carbon-based conductive coatings are complex composites, consisting of an organic or inorganic binder and conductive carbon components, for application as anodes in impressed current cathodic protection systems of reinforced concrete structures. The electrochemical properties of three coatings at different humidity and in saturated calcium hydroxide solution were studied by electrochemical methods, such as electrochemical impedance measurement, measuring of open circuit potential over time and galvanostatic polarization. The dissolved organic and inorganic carbons in electrolyte solution were quantified by using a photometric method. The structures of the coatings were investigated before and after the electrochemical tests by microscopy and scanning electron microscope/EDX analysis. The results of the electrochemical impedance measurements show that the tested coatings all have a relatively low resistance, which is between 100 and 200 Ω. The binder and the surface porosity influence the degradation behavior of those coatings. Especially the organic binder reacts with the strong alkaline medium under dissolving of organic carbon. KW - Cathodic protection KW - Corrosion KW - Rebar KW - Reinforcement KW - Concrete KW - Potential PY - 2015 DO - https://doi.org/10.1002/maco.201407680 SN - 0947-5117 SN - 1521-4176 VL - 66 IS - 7 SP - 627 EP - 634 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-33709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sander, C. A1 - Kühne, Hans-Carsten A1 - Ünal, Murat A1 - Kleine, M. A1 - Köhler, A. A1 - Kriesten, V. T1 - Betondickglasfenster - Schadensmechanismen und Instandsetzungsprinzipien zur Erhaltung N2 - Errichtet aus Glas und Beton prägen heute unzählige Sakralbauten der 1950er- und 60er-Jahre unsere Stadtbilder. Nicht selten sind in diesen Kirchen erhebliche Schäden an den Betonglasfenstern zu verzeichnen. Diese fachgemäß zu erhalten, erfordert spezielles technisches und denkmalpflegerisches Know-how. An der Entwicklung geeigneter Instandsetzungsstrategien arbeitet derzeit ein interdisziplinäres Projektteam. KW - Betonglasrestaurierung KW - Schadensmechanismen KW - Instandsetzungsprinzipien KW - Glass KW - (Reinforced) concrete KW - Church windows KW - Churches KW - Structural analysis KW - Concrete block technique KW - Reinforcement KW - Dalle de verre PY - 2011 SN - 0933-4017 VL - 7 SP - 48 EP - 53 PB - Callwey CY - München AN - OPUS4-24834 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Ronald A1 - Fischer, J. A1 - Bügler, M. A1 - Nowak, M. A1 - Thöns, S. A1 - Borrmann, A. A1 - Straub, D. T1 - Assessing and updating the reliability of concrete bridges subjected to spatial deterioration - principles and software implementation N2 - Inspection and maintenance of concrete bridges is a major cost factor in transportation infrastructure, and there is significant potential for using information gained during inspection to update predictive models of the performance and reliability of such structures. In this context, this paper presents an approach for assessing and updating the reliability of prestressed concrete bridges subjected to chloride-induced reinforcement corrosion. The system deterioration state is determined based on a Dynamic Bayesian Network (DBN) model that considers the spatial variability of the corrosion process. The overall system reliability is computed by means of a probabilistic structural model coupled with the deterioration model. Inspection data are included in the system reliability calculation through Bayesian updating on the basis of the DBN model. As proof of concept, a software prototype is developed to implement the method presented here. The software prototype is applied to a typical highway bridge and the influence of inspection information on the system deterioration state and the structural reliability is quantified taking into account the spatial correlation of the corrosion process. This work is a step towards developing a software tool that can be used by engineering practitioners to perform reliability assessments of ageing concrete bridges and update their reliability with inspection and monitoring data. KW - Structural reliability KW - Dynamic Bayesian Networks KW - Spatial deterioration KW - Inspection KW - Monitoring general KW - Analysis and design methods KW - Reinforcement KW - Corrosion KW - Prestressed concrete PY - 2015 DO - https://doi.org/10.1002/suco.201500014 SN - 1464-4177 VL - 16 IS - 3 SP - 356 EP - 365 PB - Ernst & Sohn CY - Berlin AN - OPUS4-34336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vasilic, Ksenija A1 - Schmidt, Wolfram A1 - Kühne, Hans-Carsten A1 - Haamkens, Frank A1 - Mechtcherine, V. A1 - Roussel, N. T1 - Flow of fresh concrete through reinforced elements: Experimental validation of the porous analogy numerical method N2 - Numerical simulations of concrete castings are complex and time consuming. In order to decrease simulation time and to simplify simulation procedure, an innovative modelling approach, which treats reinforced sections in a formwork as porous media, was proposed. In the previous studies, this numerical model was proved suitable to simulate casting of model yield-stress fluids through reinforced elements. This article focuses on the experimental validation of the proposed model at the concrete scale. For this purpose, a large-scale laboratory casting of a highly reinforced beam is performed. The casting process is numerically simulated and the numerical results are compared to the experimental measurements. KW - Porous medium KW - Self-compacting concrete KW - Casting KW - CFD simulation KW - Reinforcement PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S0008884616301880 DO - https://doi.org/10.1016/j.cemconres.2016.06.003 SN - 0008-8846 VL - 2016/88 SP - 1 EP - 6 PB - Elsevier Ltd. AN - OPUS4-37441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -