TY - JOUR A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The rapid mass calorimeter: A route to high throughput fire testing JF - Fire and Materials N2 - The rapid mass calorimeter based on reduced‐size specimens is proposed for accelerated fire testing and put up for discussion, particularly for flame retarded polymeric materials. A mass loss calorimeter is combined with a semiautomatic sample changer. Experiments on specimens of reduced size were conducted on poly(methyl methacrylate), poly(propylene), polyamide 66, poly(ether ether ketone), and pine sapwood square samples with edge lengths of 100, 75, 50, 25, 20, and 10 mm. Specimens of 20 × 20 mm2 were selected to achieve a crucial reduction in specimen size and a measuring protocol developed. A total of 71 different polymeric materials were investigated in the rapid mass calorimeter and cone calorimeter for comparison and several materials with different heat release rate characteristics in the pyrolysis combustion flow calorimeter to test this additional screening method as well. The important fire properties obtained in the rapid mass calorimeter show reasonable correlation with the cone calorimeter results but also with the oxygen index. All in all, the rapid mass calorimeter produces reliable and meaningful results and, despite acceleration and size reduction, still allows for a certain degree of burning behavior interpretation. Material savings of 96% and time savings of around 60%‐70% are achieved compared to measure cone calorimeter. KW - Cone calorimeter KW - Fire testing KW - High throughput KW - Mass loss calorimeter KW - Rapid mass calorimeter PY - 2017 DO - https://doi.org/10.1002/fam.2420 SN - 0308-0501 SN - 1099-1018 VL - 41 IS - 7 SP - 834 EP - 847 PB - Wiley AN - OPUS4-42503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Schartel, Bernhard T1 - The rapid mass calorimeter: Understanding reduced-scale fire test results JF - Polymer Testing N2 - The effects of reducing specimen size on the fire behavior of polymeric materials were investigated by means of the rapid mass calorimeter, a high-throughput Screening instrument. Results from the rapid mass calorimeter were compared with those from the cone calorimeter. Correlation coefficients between the different measures of each method and between the two methods are discussed to elucidate the differences and similarities in the two methods. Materials with characteristic heat release rate (HRR) curves in the cone calorimeter were evaluated in detail. The rapid mass calorimeter produces valuable and interpretable results with HRR curve characteristics similar to cone calorimeter results. Compared to cone calorimeter measurements, material savings of 96% are achieved, while maintaining the Advantages of a macroscopic fire test. KW - Rapid mass calorimeter KW - High throughput KW - Cone calorimeter KW - Flame retardancy PY - 2017 DO - https://doi.org/10.1016/j.polymertesting.2016.11.027 SN - 0142-9418 VL - 57 SP - 165 EP - 174 PB - Elsevier AN - OPUS4-38739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Metzsch-Zilligen, E. A1 - Großhauser, M. A1 - Pfaendner, R. A1 - Schartel, Bernhard T1 - Rapid mass calorimeter as a high-throughput screening method for the development of flame-retarded TPU JF - Polymer Degradation and Stability N2 - The rapid mass calorimeter (RMC) was used as a screening tool based on accelerated fire testing to assess flame-retarded thermoplastic polyurethane (TPU). The reliability of RMC results was proven with the cone calorimeter as reference fire test. The influence of melamine cyanurate (MC) concentration on the fire performance of TPU was investigated, along with some flame-retardant combinations such as MC with aluminium diethylphosphinate (AlPi), aluminium trihydrate (ATH), and melamine polyphosphate (MPP). The two-stage burning behaviour of TPU was investigated in detail; the first stage corresponds mainly to the hard segments' decomposition and has a much lower effective heat of combustion (EHC) than the second stage, in which mainly the soft segments decompose and an intensive liquid pool fire is observed in the cone calorimeter set-up. In addition to fire testing with the cone calorimeter, RMC, and UL 94 flammability tests, the decomposition of the materials was investigated using thermogravimetric analysis coupled with infrared spectrometry (TGeFTIR). TPU/MC/AlPi shows the most promising results, achieving V-0 classification in UL 94 and reducing the extreme peak heat release rate (PHRR) of the liquid pool fire from 3154 kW/m2 to 635 kW/m2. Using MC/AlPi/MPP enhances the latter PHRR reduction further. The decomposition products identified in the gas phase via TGeFTIR reveal specific MCeAlPi eMPP interactions, as they differ from products seen in systems with MC/AlPi or MC/MPP. Correlations between RMC and cone calorimeter results were examined and presented in the final part of the paper. Several characteristics correlate strongly, pointing out that RMC is a reliable high-throughput fire testing method to screen multicomponent flame-retardant solutions in TPU. KW - Thermoplastic polyurethane KW - Flame retardancy KW - Rapid mass calorimeter KW - High throughput screening PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456982 SN - 0141-3910 SN - 1873-2321 VL - 156 SP - 43 EP - 58 PB - Elsevier Ltd. AN - OPUS4-45698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sut, Aleksandra A1 - Metzsch-Zilligen, E. A1 - Großhauser, M. A1 - Pfaendner, R. A1 - Schartel, Bernhard T1 - Synergy between melamine cyanurate, melamine polyphosphate and aluminum diethylphosphinate in flame retarded thermoplastic polyurethane JF - Polymer Testing N2 - The multicomponent flame retardant system of melamine polyphosphate (MPP), melamine cyanurate (MC) and aluminum diethylphosphinate (AlPi) is proposed and investigated for thermoplastic polyurethane (TPU). The synergy between those additives and the resulting superior fire performance are discussed. Systematically varied sets of flame retarded TPU with various MPP/MC/AlPi ratios were investigated in terms of fire behavior, pyrolysis products and mechanical properties. The total amount of the additives was always 30 wt.-%. Further, the influence of various AlPi concentrations was investigated. The optimal MPP:MC ratio was determined while keeping the amount of AlPi constant. The combination of 8 wt.-% MPP, 12 wt.-% MC and 10 wt.-% is proposed as the most promising halogen free flame retardant formulation for TPU, because it yielded a reduction in PHRR from 2660 kW/m2 (TPU) to 452 kW/m2 and enabled V-0 classification in the UL 94 test. Combinations of MPP and MC as well a high concentration of AlPi are beneficial for the mechanical properties e.g. tensile strength and elongation at break of the formulations and could be a strong competitor to commercial flame retarded TPUs. KW - Thermoplastic polyurethane KW - Synergy KW - Melamine cyanurate KW - Melamine polyphosphate KW - Aluminum diethylphosphinate KW - Rapid mass calorimeter PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-472523 DO - https://doi.org/10.1016/j.polymertesting.2019.01.001 SN - 0142-9418 VL - 74 SP - 196 EP - 204 PB - Elsevier Ltd. AN - OPUS4-47252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -