TY - JOUR A1 - Merk, Sven A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. A1 - Panne, Ulrich T1 - Laser-induced plasma tomography by the Radon transform JF - Journal of analytical atomic spectrometry N2 - The Radon transform is tested as a method for reconstruction of the emissivity distribution of asymmetric laser induced plasmas. Two types of experiments were carried out. First, the plasma asymmetry is introduced via focusing the laser by a cylindrical lens to create plasma plumes elongated along the symmetry axis of the lens. Second, an asymmetric power distribution across the laser beam is created by reflecting the latter from a damaged mirror. Various effects on the quality of the plasma emissivity reconstructed by the Radon tomography method are investigated. The understanding of these effects appears to be essential to design a proper experimental setup to study LIBS plasmas by the Radon tomography method. It is demonstrated that the Radon tomography can successfully be used for experimental studies of asymmetric LIBS plasmas. KW - Radon transform KW - Laser induced plasma KW - LIBS KW - Plasma tomography PY - 2011 DO - https://doi.org/10.1039/c1ja10187k SN - 0267-9477 SN - 1364-5544 VL - 26 SP - 2483 EP - 2492 PB - Royal Society of Chemistry CY - London AN - OPUS4-24889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Tokarski, T. A1 - Rychlowski, L. A1 - Cios, G. A1 - Winkelmann, A. T1 - Crystallographic analysis of the lattice metric (CALM) from single electron backscatter diffraction or transmission Kikuchi diffraction patterns JF - Journal of Applied Crystallography N2 - A new software is presented for the determination of crystal lattice parameters from the positions and widths of Kikuchi bands in a diffraction pattern. Starting with a single wide-angle Kikuchi pattern of arbitrary resolution and unknown phase, the traces of all visibly diffracting lattice planes are manually derived from four initial Kikuchi band traces via an intuitive graphical user interface. A single Kikuchi bandwidth is then used as reference to scale all reciprocal lattice point distances. Kikuchi band detection, via a filtered Funk transformation, and simultaneous display of the band intensity profile helps users to select band positions and widths. Bandwidths are calculated using the first derivative of the band profiles as excess-deficiency effects have minimal influence. From the reciprocal lattice, the metrics of possible Bravais lattice types are derived for all crystal systems. The measured lattice parameters achieve a precision of <1%, even for good quality Kikuchi diffraction patterns of 400 x 300 pixels. This band-edge detection approach has been validated on several hundred experimental diffraction patterns from phases of different symmetries and random orientations. It produces a systematic lattice parameter offset of up to ±4%, which appears to scale with the mean atomic number or the backscatter coefficient. KW - Electron backscatter diffraction KW - Kikuchi patterns KW - Lattice parameters KW - Radon transform PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527076 DO - https://doi.org/10.1107/S1600576721004210 SN - 1600-5767 VL - 54 IS - Pt 3 SP - 1012 EP - 1022 AN - OPUS4-52707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -