TY - JOUR A1 - Ante, A. A1 - Trumpler, A. A1 - Niermann, S. A1 - Decker, Renate A1 - Hermann, L. A1 - Adam, Christian T1 - SUSAN - Sustainable and safe re-use of municipal sewage sludge for nutrient recovery JF - GWF / Wasser, Abwasser KW - Sewage sludge KW - Phosphorus KW - Recycling KW - Thermochemical treatment KW - Heavy metal removal KW - Large scale consideration PY - 2010 SN - 0016-3651 VL - 151 IS - 13 SP - 78 EP - 84 PB - Oldenbourg-Industrieverl. CY - München AN - OPUS4-22097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Battig, Alexander A1 - Müller, Patrick A1 - Bertin, Annabelle A1 - Schartel, Bernhard T1 - Hyperbranched Rigid Aromatic Phosphorus-Containing Flame Retardants for Epoxy Resins JF - Macromolecular Materials and Engineering N2 - A rigid aromatic phosphorus-containing hyperbranched flame retardant structure is synthesized from 10-(2,5 dihydroxyphenyl)-10H-9-oxa- 10-phosphaphenanthrene-10-oxide (DOPO-HQ), tris(4-hydroxyphenyl)phosphine oxide (THPPO), and 1,4-terephthaloyl chloride (TPC). The resulting poly-(DOPO-HQ/THPPO-terephthalate) (PDTT) is implemented as a flame retardant into an epoxy resin (EP) at a 10 wt% loading. The effects on EP are compared with those of the monomer DOPO-HQ and triphenylphosphine oxide (OPPh3) as low molar mass flame retardants. The glass transition temperature, thermal decomposition, flammability (reaction to small flame), and burning behavior of the thermosets are investigated using differential scanning calorimetry, thermogravimetric analysis, pyrolysis combustion flow calorimetry, UL 94-burning chamber testing, and cone calorimeter measurements. Although P-contents are low at only 0.6 wt%, the study aims not at attaining V-0, but at presenting a proof of principle: Epoxy resinswith PDTT show promising fire performance, exhibiting a 25% reduction in total heat evolved (THE), a 30% reduction in peak heat release rate (PHRR) due to flame inhibition (21% reduction in effective heat of combustion (EHC)), and an increase in Tg at the same time. This study indicates that rigid aromatic hyperbranched polymeric structures offer a promising route toward multifunctional flame retardancy. KW - Hyperbranched KW - Aromatic KW - Phosphorus KW - Phosphine oxide KW - DOPO KW - Flame retardant KW - Xpoxy resin KW - Rigid PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525910 DO - https://doi.org/10.1002/mame.202000731 SN - 1439-2054 VL - 306 IS - 4 SP - 731 PB - Wiley AN - OPUS4-52591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Görner, Wolf A1 - Haase, Oskar A1 - Ostermann, Markus A1 - Segebade, Christian T1 - Instrumental analysis of phosphorus in organic material using high energy beta-counting after photoactivation (IPAA) JF - Journal of radioanalytical and nuclear chemistry N2 - C, N, O, F and P can be analyzed by instrumental photon activation analysis (IPAA) including decay curve analysis. The interference of 30P (T1/2 = 149.9 s) by 15O (T1/2 = 122.2 s) can be ruled out by direct positron measurement making use of the largely different maximum β+-energies of both nuclides (3.24 MeV and 1.73 MeV, respectively). Interference by carbon (11C) can be avoided by sub-threshold activation with 17 MeV bremsstrahlung. The short half-life of 30P allows a high productivity of the method. Reliability was demonstrated in the range of 0.2%–2% P (detection limit = 40 µg/g). Analysis of a certified reference material (BCR-CRM 063) yielded excellent agreement with the certified data. KW - Instrumental analysis KW - Phosphorus KW - Photon activation PY - 2008 DO - https://doi.org/10.1007/s10967-007-0441-5 SN - 0236-5731 SN - 1588-2780 SN - 1417-2097 VL - 276 IS - 1 SP - 251 EP - 255 PB - Elsevier Sequoia CY - Lausanne AN - OPUS4-19157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowalke, J. A1 - Arnold, C. A1 - Ponomarev, I. A1 - Jäger, Christian A1 - Kroll, P. A1 - Brendler, E. A1 - Kroke, E. T1 - Structural Insight into Layered Silicon Hydrogen Phosphates Containing [SiO6] Octahedra Prepared by Different Reaction Routes JF - European journal of inorganic chemistry N2 - The layered silicophosphate Si(HPO4)(2) was prepared via a novel synthesis approach using silicon nanopowder and ortho-phosphoric acid at 150 degrees C providing a polycrystalline product. Silicophosphate compounds with sixfold coordinated silicon atoms obtained from pyrophosphoric acid H4P2O7 and tetraalkoxysilanes via a sol-gel route exhibit the same short-range order. The solid products were analyzed with XRD, elemental analysis (ICP-AES), and detailed NMR spectroscopic studies, including H-1, C-13, Si-29, and P-31 MAS-, P-31-Si-29-REDOR, HETCOR, and CP-RFDR experiments. DFT calculations support the structure of Si(HPO4)(2) consisting of layers of [SiO6] octahedra linked by [O3P(OH)] tetrahedra. The OH groups point to the neighboring layers and may be substituted by ethoxy or other groups. KW - Silicon KW - Phosphorus KW - Sol-gel processes KW - NMR spectroscopy KW - Computational chemistry PY - 2019 DO - https://doi.org/10.1002/ejic.201801321 IS - 6 SP - 828 EP - 836 PB - ChemPubSoc AN - OPUS4-48058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kratz, S. A1 - Vogel, Christian A1 - Adam, Christian T1 - Agronomic performance of P recycling fertilizers and methods to predict it: a review JF - Nutrient Cycling in Agroecosystems N2 - Phosphorus (P) is an essential element for all life forms, and P-availability thus an important driver of a functioning agriculture. However, phosphate rock resources for P-fertilizer production are only available in a few countries. Therefore, P-recovery from waste materials has become of increasing interest during the last decade and has been investigated worldwide. In order to characterize potential novel P-fertilizers made from recycled materials, a large array of P-compound characterizations, chemical extractions and growth experiments were performed. This review bundles the work carried out in that field over the last years. Overall, P-fertilizers from recycled materials show a broad range of P-compounds with very different chemical structure and solubility. Growth experiments performed to assess their fertilizing effects display high variations for most of the products. While these experiments have demonstrated that some fertilizers made of recycled materials may reach P effects in the same order of magnitude as water-soluble phosphate rock-based fertilizers, an important limitation in their interpretation is the fact that they often vary considerably in their experimental design. The existing data show clearly that standardization of growth experiments is urgently needed to achieve comparable results. Standard chemical extractants used to assess the chemical solubility of P-fertilizers were found to be of limited reliability for predicting plant P uptake. Therefore, alternative methods such as sequential fractionation, or the extraction of incubated soil/fertilizer mixtures with standard soil extractants or with P sink methods should be tested more intensively in the future to provide alternative options to predict the P-availability of fertilizers from recycled materials. KW - Recycling fertilizer KW - Phosphorus KW - Chemical extraction methods KW - Agronomic performance KW - Incubated soil/fertilizer mixtures KW - P sink method KW - Diffusive gradients in thin films (DGT) PY - 2019 DO - https://doi.org/10.1007/s10705-019-10010-7 SN - 1385-1314 SN - 1573-0867 VL - 115 IS - 1 SP - 1 EP - 39 PB - Springer AN - OPUS4-48713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Oliver A1 - Adam, Christian T1 - Recovery potential of German sewage sludge ash JF - Waste management N2 - Incineration of sewage sludge is expected to increase in the future due to growing concerns about the direct use of sludge in agriculture. Sewage sludge is the pollutant sink of wastewater treatment and thus loaded with contaminants that might pose environmental hazards. Incineration degrades organic pollutants efficiently, but since the ash is currently mostly disposed of, all valuable component like phosphorus (P) and technologically relevant metals present in the sewage sludge ash (SSA) are removed from the economic cycle entirely. We conducted a complete survey of SSA from German mono-incineration facilities and determined the theoretical recovery potential of 57 elements. German SSA contains up to 19,000 t/a P which equals approximately 13% of phosphorus applied in the German agriculture in form of phosphate rock based mineral fertilizers. Thus, SSA is an important secondary resource of P. However, its P-solubility in ammonium citrate solution, an indicator for the bioavailability, is only about 26%. Treatment of SSA is recommended to enhance P bioavailability and remove heavy metals before it is applied as fertilizer. The recovery potential for technologically relevant metals is generally low, but some of these elements might be recovered efficiently in the course of P recovery exploiting synergies. KW - Sewage sludge ash KW - Recovery potential KW - Phosphorus KW - Critical raw materials KW - Bioavailability KW - Phosphorus recovery KW - Monitoring PY - 2015 DO - https://doi.org/10.1016/j.wasman.2015.01.025 SN - 0956-053X VL - 45 SP - 400 EP - 406 PB - Pergamon Press CY - New York, NY AN - OPUS4-34157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, J. C. A1 - Battig, Alexander A1 - Velencoso, M. M. A1 - Pollok, D. A1 - Schartel, Bernhard A1 - Wurm, F. R. T1 - Aromatic vs. Aliphatic Hyperbranched Polyphosphoesters as Flame Retardants in Epoxy Resins JF - Molecules N2 - The current trend for future flame retardants (FRs) goes to novel efficient halogen-free materials, due to the ban of several halogenated FRs. Among the most promising alternatives are phosphorus-based FRs, and of those, polymeric materials with complex shape have been recently reported. Herein, we present novel halogen-free aromatic and aliphatic hyperbranched polyphosphoesters (hbPPEs), which were synthesized by olefin Metathesis polymerization and investigated them as a FR in epoxy resins. We compare their efficiency (aliphatic vs. aromatic) and further assess the differences between the monomeric compounds and the hbPPEs. The decomposition and vaporizing behavior of a compound is an important factor in its flame-retardant behavior, but also the interaction with the pyrolyzing matrix has a significant influence on the performance. Therefore, the challenge in designing a FR is to optimize the chemical structure and its decomposition pathway to the matrix, with regards to time and temperature. This behavior becomes obvious in this study, and explains the superior gas phase activity of the aliphatic FRs. KW - Phosphorus KW - Metathesis KW - Dendritic KW - Cone calorimeter KW - Fire test PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-494535 DO - https://doi.org/10.3390/molecules24213901 SN - 1420-3049 VL - 24 IS - 21 SP - 3901 PB - MDPI AN - OPUS4-49453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markwart, Jens C. A1 - Battig, Alexander A1 - Zimmermann, Lisa A1 - Wagner, Martin A1 - Fischer, Jochen A1 - Schartel, Bernhard A1 - Wurm, Frederik R. T1 - Systematically controlled decomposition mechanism in phosphorus flame retardants by precise molecular architecture: P−O vs P−N JF - ACS Applied Polymer Materials N2 - Flame retardants (FR) are inevitable additives to many plastics. Halogenated organics are effective FRs but are controversially discussed due to the release of toxic gases during a fire or their persistence if landfilled. Phosphorus-containing compounds are effective alternatives to halogenated FRs and have potential lower toxicity and degradability. In addition, nitrogencontaining additives were reported to induce synergistic effects with phosphorus-based FRs. However, no systematic study of the gradual variation on a single phosphorus FR containing both P−O and P−N moieties and their comparison to the respective blends of phosphates and phosphoramides was reported. This study developed general design principles for P−O- and P−N-based FRs and will help to design effective FRs for various polymers. We synthesized a library of phosphorus FRs that only differ in their P-binding pattern from each other and studied their decomposition mechanism in epoxy resins. Systematic control over the decomposition pathways of phosphate (PO(OR)3), phosphoramidate (PO(OR)2(NHR)), phosphorodiamidate (PO(OR)(NHR)2), phosphoramide (PO(NHR)3), and their blends was identified, for example, by reducing cis-elimination and the formation of P−N-rich char with increasing nitrogen content in the P-binding sphere. Our FR epoxy resins can compete with commercial FRs in most cases, but we proved that the blending of esters and amides outperformed the single molecule amidates/diamidates due to distinctively different decomposition mechanisms acting synergistically when blended. KW - Phosphorus KW - Flame retardants KW - Epoxies KW - Mechanistic study KW - Toxicity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481549 DO - https://doi.org/10.1021/acsapm.9b00129 SN - 2637-6105 VL - 1 IS - 5 SP - 1118 EP - 1128 PB - ACS AN - OPUS4-48154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simon, Franz-Georg A1 - Adam, Christian T1 - Ressourcen aus Abfall JF - Chemie - Ingenieur - Technik N2 - Die Beseitigung unbehandelter Abfälle auf Deponien gehört der Vergangenheit an, nicht nur weil Verordnungen diese Praxis verbieten, sondern auch, weil wegen steigender Preise für Rohstoffe und sinkender Gehalte in Erzen auch in Abfällen nach Alternativen gesucht wird. In den Aschen aus Hausmüllverbrennungsanlagen können mit einfachen Verfahren Metalle zurückgewonnen werden. Mit dem Phosphor aus Klärschlammaschen können Düngemittel hergestellt und so natürliche Ressourcen geschont werden. In beiden Fällen ist die Anreicherung der Wertstoffe durch den Verbrennungsprozess vorteilhaft, da die Effizienz von Recyclingprozessen stark von der Konzentration im Ausgangsgut abhängig ist.-------------------------------------------------------------------------------------------------------------------------------- Disposal of untreated waste has come to end due to new legislation in this field. Furthermore as a response to increasing prices for primary raw materials and decreasing ore concentrations products from waste treatment display a source for secondary raw materials. Elemental metals can be easily separated from municipal solid waste incineration bottom ash. Fertilizers can be produced using phosphate from sewage sludge ashes thus preserving natural resources. In both cases the enrichment taking place in the incineration process facilitates the resource recovery, because the efficiency of recycling processes is dependent on the concentration of the input material. KW - Klärschlammaschen KW - NE-Metalle KW - Phosphor KW - Rostaschen KW - Bottom ash KW - Nonferrous metals KW - Phosphorus KW - Sewage sludge ash PY - 2012 DO - https://doi.org/10.1002/cite.201100189 SN - 0009-286X SN - 1522-2640 VL - 84 IS - 7 SP - 999 EP - 1004 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-26209 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Smol, M. A1 - Adam, Christian A1 - Krüger, O. T1 - Use of nutrients from wastewater for the fertilizer industry - approaches towards the implementation of the circular economy (CE) JF - Desalination and Water Treatment N2 - More sustainable waste management practices are an important element in the Transformation towards a circular economy (CE). Activities in this area should be dedicated to all groups of waste, including those generated in the water and sewage sector. This paper presents the characteristics of sewage sludge ash (SSA) coming from Polish municipal waste incineration plants. Due to the high content of nutrients such as phosphorus (8.01% P2O5), calcium (5.11% CaO) and magnesium (2.75% MgO), the analyzed SSA may constitute a valuable source of raw materials for the fertilizer industry. Despite the good fertilizing properties of the SSA, in some cases the presence of heavy metals such as cadmium (0.74–1.4 mg/kg dry matter), lead (49.8–99 mg/kg dry matter), mercury (3.93 mg/kg dry matter) and arsenic (4.23–4.43 mg/kg dry matter) and poor bioavailability of P from SSA disqualifies this waste from direct use as a fertilizer. Therefore, it is necessary to look for methods that will allow the municipal SSA to be processed, for example, technologies for the extraction of phosphorus and the production of phosphate fertilizer. This way of SSA management is in the line with the CE assumptions, in which waste becomes a valuable source of secondary raw materials. Fertilizer produced from waste meeting quality, safety and labelling requirements and limits of organic, microbiological and physical contaminants will be able to be traded freely within the European Union (EU) and receive the CE marking. The idea of use of SSA for fertilizer purposes is consistent not only with the objectives of the CE but also with the Polish National Waste Management Plan 2022 and the Municipal Sewage Sludge Strategy 2019–2022, which emphasizes the necessity to maximize the use of biogenic substances contained in wastewater. Therefore, sustainable management of SSA, in particular its storage in a way enabling the recovery of phosphorus, should be promoted. KW - Wastewater KW - Circular economy KW - Fertilizer KW - Sewage sludge KW - Phosphorus PY - 2020 DO - https://doi.org/10.5004/dwt.2020.25113 VL - 1 SP - 1 EP - 9 PB - Desalination Publications CY - Hopkinton, MA 01748, USA AN - OPUS4-50646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -