TY - JOUR A1 - Kasinathan, M. A1 - Wosniok, Aleksander A1 - Krebber, Katerina A1 - Babu Rao, C. T1 - Optical fiber defect detection using Brillouin optical time domain analyser JF - Indian Journal of Pure & Applied Physics N2 - A new technique for optical fiber defect detection using Brillouin distributed fiber optic sensor (DFOS) has been proposed and experimentally demonstrated in this paper. This technique is based on stimulated Brillouin scattering (SBS), which offers three wave interaction in single mode optical fiber (SMF -10 μm/125 μm acrylic coated fiber). The nonlinear effect of SBS is manipulated to locate the defect in optical fiber using distributed sensing technology. Various kind of defects may be present in optical fibers. This paper details a case study on observation of a defect, which manifests its presence in certain temperature values. The detail of defect detection through distributed fiber sensor using the SBS has been brought out. SBS is sensitive to temperature and strain. In order to study the effect of defect in distributed fiber sensor as function of temperature and strain, the distributed pre-strained and unstrained optical fiber is subjected to temperature variation and corresponding measurements are obtained with Brillouin optical time domain analyser (BOTDA). This technique enables the utilization of Brillouin parameters, such as decreased amplitude, frequency and increased linewidth in the defect region of the fiber length. The fiber defect location can be determined with spatial resolution accuracy of less than 50 cm of using BOTDA technique. KW - Stimulated Brillouin scattering KW - Distributed sensor KW - Optical fiber KW - Brillouin Optical Time Domain Analysis PY - 2016 SN - 0019-5596 VL - 54 IS - 9 SP - 565 EP - 570 PB - NISCAIR AN - OPUS4-37914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Jurke, Mathias A1 - Zoheidi, M. A1 - Krüger, Jörg T1 - Influence of mechanical stress on nanosecond laser-induced damage threshold of fused silica JF - Applied surface science N2 - Optical multimode fibers made of fused silica are widely used for transmission of high power laser pulses. Bending of fibers creates mechanical stress inside the material. The bend stress of a fiber can be calculated from bend radius, geometrical fiber parameters and Young's Modulus of the fiber core material and reaches typically values of 220 MPa. A thermo-elastic model of Kusov et al. predicts a quadratic dependence of laser-induced damage threshold fluence with applied stress. In the present study, fiber preform material F300 (Heraeus) was loaded mechanically with pressures up to 220 MPa representing 20% of the pressure resistance of fused silica. Bulk laser-induced damage thresholds (LIDT) were evaluated using a longitudinal multimode Q-switched Nd:YAG laser (1064 nm) at a pulse duration of 12 ns with polarization states parallel and perpendicular to the stress direction. LIDT of fused silica samples of about 700 J/cm2 were found. LIDT did not show a dependence on mechanical pressure and polarization state which is a consequence of the small ratio of maximum applied stress (220 MPa) to Young's Modulus of fused silica (72.5 GPa). KW - Laser-induced damage threshold KW - LIDT KW - Nanosecond laser KW - Fused silica KW - Mechanical stress KW - Optical fiber PY - 2012 DO - https://doi.org/10.1016/j.apsusc.2012.01.049 SN - 0169-4332 SN - 1873-5584 VL - 258 IS - 23 SP - 9153 EP - 9156 PB - North-Holland CY - Amsterdam AN - OPUS4-26225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - Beam diameter dependence of surface damage threshold of fused silica fibers and preforms for nanosecond laser treatment at 1064 nm wavelength JF - Applied surface science N2 - Optical fibers made of fused silica are a common method of transmitting high laser pulse energies. Failure of those fibers is a significant risk. The determination of laser-induced damage thresholds (LIDT) on fiber end facets according to ISO 21254 standard is needed. In the past, single pulse nanosecond laser experiments showed an improvement of LIDT with increasing fiber core diameter for 1064 nm wavelength and a constant beam diameter of 50 µm. This paper pays particular attention to the influence of the laser beam diameter on damage resistance. All-silica fiber types (LEONI) with different core diameters (100–600 µm) were investigated using beam diameters in a range from 30 µm to 100 µm. For comparison experiments on fused silica preform material (Heraeus F300) were performed. On one hand, surface LIDT of fused silica preform material decreases significantly with increasing beam size. A model considering a random distribution of point defects explains the experimental data qualitatively. On the other hand, LIDT of fiber end facets stays constant. White light microscopy results suggest that the point defect density on fiber end facets is lower compared to the preform surface due to an excellent surface polish quality. KW - Laser-induced damage threshold KW - Nanosecond laser KW - Optical fiber KW - Fused silica KW - Spot size KW - Defect model PY - 2013 DO - https://doi.org/10.1016/j.apsusc.2013.03.088 SN - 0169-4332 SN - 1873-5584 VL - 276 SP - 312 EP - 316 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-28310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -