TY - JOUR A1 - Avranas, Antonis A1 - Komnianou, A. A1 - Retter, Utz T1 - On the adsorption and condensed filmformation of dodecyl-, tetradecyl-, hexadecyl-, and octadecyltrimethylammonium bromides at the mercury/electrolyte interface JF - Journal of colloid and interface science N2 - The adsorption and condensed film formation of dodecyl (DTAB)-, tetradecyl (TTAB)-, hexadecyl (CTAB)-, and octadecyl (OTAB)-trimethylammonium bromides on the hanging mercury electrode is studied in KBr as supporting electrolyte, at various temperatures from 5 to 45 °C. A condensed film is formed at negative potentials and at room temperature only in the presence of CTAB. The decrease of the temperature favors the formation of the condensed film. A transition temperature is observed for the film formation. Capacity–time curves at the potentials where the film is formed show a nucleation and growth mechanism, with induction time depending not only on the final potential but also on the initial potential range, although it is in the desorption region. In this temperature range no film is observed for DTAB and TTAB. However, the film is observed for OTAB, but only at higher temperatures, and is more easily formed with increasing temperature. The film is formed in a certain potential region and the nucleation rate increases while moving toward more negative potentials. Hysteresis phenomena are observed during changes of scan direction. The capacity vs time curves for OTAB, where condensed film is formed, are treated using an Avrami plot formulation and have been explained as progressive one-dimensional nucleation with a decrease of the nucleation rate during the overall film formation. The results show a marked effect of the chain length of the alkyl chain on the film formation. KW - Dodecyltrimethylammonium bromide KW - Tetradecyltrimethylammonium bromide KW - Cetyltrimethylammonium bromide KW - Octadecyltrimethylammonium bromide KW - Differential capacity KW - Condensed film KW - Nucleation PY - 2003 DO - https://doi.org/10.1016/S0021-9797(03)00534-4 SN - 0021-9797 SN - 1095-7103 VL - 264 IS - 2 SP - 407 EP - 413 PB - Elsevier CY - Orlando, Fla. AN - OPUS4-2715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bach, S. A1 - Panthöfer, M. A1 - Bienert, Ralf A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska A1 - Tremel, W. T1 - Role of water during crystallization of amorphous cobalt phosphate nanoparticles JF - Crystal Growth & Design N2 - The transformation of amorphous precursors into crystalline solids and the associated mechanisms are still poorly understood. We illuminate the formation and reactivity of an amorphous cobalt phosphate hydrate precursor and the role of water for its crystallization process. Amorphous cobalt phosphate hydrate nanoparticles (ACP) with diameters of ∼20 nm were prepared in the absence of additives from aqueous solutions at low concentrations and with short reaction times. To avoid the kinetically controlled transformation of metastable ACP into crystalline Co₃(PO₄)₂ × 8H₂O (CPO) its separation must be fast. The crystallinity of ACP could be controlled through the temperature during precipitation. A second amorphous phase (HT-ACP) containing less water and anhydrous Co₃(PO₄)₂ was formed at higher temperature by the release of coordinating water. ACP contains approximately five molecules of structural water per formula unit as determined by thermal analysis (TGA) and quantitative IR spectroscopy. The Co²+ coordination in ACP is tetrahedral, as shown by XANES/EXAFS spectroscopy, but octahedral in crystalline CPO. ACP is stable in the absence of water even at 500 °C. In the wet state, the transformation of ACP to CPO is triggered by the diffusion and incorporation of water into the structure. Quantitative in situ IR analysis allowed monitoring the crystallization kinetics of ACP in the presence of water. KW - Fluorapatite-gelatin nanocomposites KW - Calcium-carbonate KW - Zinc phosphate KW - Crystal-growth KW - Nucleation KW - Polymorphism PY - 2016 DO - https://doi.org/10.1021/acs.cgd.6b00208 SN - 1528-7483 SN - 1528-7505 VL - 16 IS - 8 SP - 4232 EP - 4239 PB - ACS Publications AN - OPUS4-37616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chewle, Surahit A1 - Emmerling, Franziska A1 - Weber, M. T1 - Effect of choice of solvent on crystallization pathway of paracetamol: An experimental and theoretical case study JF - Crystals N2 - The choice of solvents influences crystalline solid formed during the crystallization of active pharmaceutical ingredients (API). The underlying effects are not always well understood because of the complexity of the systems. Theoretical models are often insufficient to describe this phenomenon. In this study, the crystallization behavior of the model drug paracetamol in different solvents was studied based on experimental and molecular dynamics data. The crystallization process was followed in situ using time-resolved Raman spectroscopy. Molecular dynamics with simulated annealing algorithm was used for an atomistic understanding of the underlying processes. The experimental and theoretical data indicate that paracetamol molecules adopt a particular geometry in a given solvent predefining the crystallization of certain polymorphs KW - Crystallization KW - Nucleation KW - Polymorphism KW - Raman spectroscopy KW - Cassical nucleation theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520052 DO - https://doi.org/10.3390/cryst10121107 SN - 2073-4352 VL - 10 IS - 12 SP - 1 EP - 10 PB - MDPI CY - Basel AN - OPUS4-52005 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Moraes, Flavia A1 - Müller, Wolfgang A1 - Frischat, G.H. A1 - Müller, Ralf T1 - Corrosion and crystallization at the inner surfaces of glass bricks JF - Journal of non-crystalline solids N2 - Glass bricks are important transparent building materials. They are produced by joining two halves of glass pressings at 600–700 °C. During this production process alkali oxides evaporate and are redeposited at the cooler inner front surfaces of the bricks. This surface layer reacts with H2O and CO2 from the residual brick atmosphere, leading to the formation of an alkali-rich silicate-hydrate layer of ≥50 nm thickness, which could be evidenced leading to a reduced nano-hardness of similar thickness, and from which NaHCO3 crystals can finally grow. Climate chamber experiments (repeated cooling between at -8 and -14 °C and reheating to 0 to 15 °C) resulted in reversible NaHCO3 crystallization and redissolution, presumably influenced by water evaporation or condensation and driven by the NaHCO3 supersaturation of the silicate-hydrate layer. Depending on the time–temperature schedule, different crystal morphologies became visible in this closed system, e.g. isolated spherical crystals, crystals arranged in chains and in double-chains, respectively, which can limit already the transmittance of the glass bricks. When a crack occurs or the brick is opened, the hygroscopic NaHCO3 crystals take up more H2O from the ambient, react irreversibly with the glass surface, finally leading to a total loss of transmittance. KW - Chemical properties KW - Chemical durability KW - Corrosion KW - Crystallization KW - Crystal growth KW - Nucleation KW - Glasses KW - Mass spectroscopy KW - Mechanical properties KW - Hardness KW - Indentation KW - Microindentation KW - Microscopy KW - Optical microscopy KW - Scanning electron microscopy KW - Optical properties KW - Optical spectroscopy KW - Oxide glasses KW - Alkali silicates KW - Soda-lime-silica KW - Surfaces and interfaces PY - 2008 DO - https://doi.org/10.1016/j.jnoncrysol.2007.07.086 SN - 0022-3093 VL - 354 IS - 2-9 SP - 284 EP - 289 PB - North-Holland Publ. Co. CY - Amsterdam AN - OPUS4-16433 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - Scoppola, E. A1 - Wolf, S.E. A1 - Kochovski, Z. A1 - Matzdorff, D. A1 - Van Driessche, A. E. S. A1 - Hövelmann, J. A1 - Emmerling, Franziska A1 - Stawski, Tomasz M. T1 - Evidence for liquid-liquid phase separation during the early stages of Mg-struvite formation JF - The Journal of Chemical Physics N2 - The precipitation of struvite, a magnesium ammonium phosphate hexahydrate (MgNH₄PO₄ · 6H₂O) mineral, from wastewater is a promising method for recovering phosphorous. While this process is commonly used in engineered environments, our understanding of the underlying mechanisms responsible for the formation of struvite crystals remains limited. Specifically, indirect evidence suggests the involvement of an amorphous precursor and the occurrence of multi-step processes in struvite formation, which would indicate non-classical paths of nucleation and crystallization. In this study, we use synchrotron-based in situ x-ray scattering complemented by cryogenic transmission electron microscopy to obtain new insights from the earliest stages of struvite formation. The holistic scattering data captured the structure of an entire assembly in a time-resolved manner. The structural features comprise the aqueous medium, the growing struvite crystals, and any potential heterogeneities or complex entities. By analysing the scattering data, we found that the onset of crystallization causes a perturbation in the structure of the surrounding aqueous medium. This perturbation is characterized by the occurrence and evolution of Ornstein-Zernike fluctuations on a scale of about 1 nm, suggesting a non-classical nature of the system. We interpret this phenomenon as a liquid-liquid phase separation, which gives rise to the formation of the amorphous precursor phase preceding actual crystal growth of struvite. Our microscopy results confirm that the formation of Mg-struvite includes a short-lived amorphous phase, lasting >10 s. KW - Physical and theoretical chemistry KW - Non-classical crystallization KW - Struvite KW - Liquid-liquid-phase-separation KW - Nucleation KW - Crystallization KW - In-situ scattering PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584766 DO - https://doi.org/10.1063/5.0166278 SN - 1089-7690 VL - 159 IS - 13 SP - 1 EP - 12 PB - AIP Publishing CY - Woodbury, NY AN - OPUS4-58476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paskin, A. A1 - Couasnon, T. A1 - Perez, J. P. H. A1 - Lobanov, S. S. A1 - Blukis, R. A1 - Reinsch, Stefan A1 - Benning, L. G. T1 - Nucleation and Crystallization of Ferrous Phosphate Hydrate via an Amorphous Intermediate JF - Journal of the American Chemical Society N2 - The fundamental processes of nucleation and crystallization are widely observed in systems relevant to material synthesis and biomineralization; yet most often, their mechanism remains unclear. In this study, we unravel the discrete stages of nucleation and crystallization of Fe3(PO4)2·8H2O (vivianite). We experimentally monitored the formation and transformation from ions to solid products by employing correlated, time-resolved in situ and ex situ approaches. We show that vivianite crystallization occurs in distinct stages via a transient amorphous precursor phase. The metastable amorphous ferrous phosphate (AFEP) intermediate could be isolated and stabilized. We resolved the differences in bonding environments, structure, and symmetric changes of the Fe site during the transformation of AFEP to crystalline vivianite through synchrotron X-ray absorption spectroscopy at the Fe K-edge. This intermediate AFEP phase has a lower water content and less distorted local symmetry, compared to the crystalline end product vivianite. Our combined results indicate that a nonclassical, hydration-induced nucleation and transformation driven by the incorporation and rearrangement of water molecules and ions (Fe2+ and PO4 3−) within the AFEP is the dominating mechanism of vivianite formation at moderately high to low vivianite supersaturations (saturation index ≤ 10.19). We offer fundamental insights into the aqueous, amorphous-to-crystalline transformations in the Fe2+−PO4 system and highlight the different attributes of the AFEP, compared to its crystalline counterpart. KW - Nucleation KW - Crystallization KW - Vivianite KW - Ferrous phosphate hydrate PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580696 DO - https://doi.org/10.1021/jacs.3c01494 SN - 0002-7863 VL - 145 IS - 28 SP - 15137 EP - 15151 PB - ACS Publications AN - OPUS4-58069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pelegrina, J.L. A1 - Yawny, A. A1 - Olbricht, Jürgen T1 - Comment on: "Isothermal nature of the B2-B19' martensitic transformation in a Ti-51.2 Ni (at.%) alloy" JF - Scripta materialia N2 - Fukuda et al. published a paper (Scripta Mater. 68 (2013) 984–987) in which they claimed to be able to determine the isothermal nature of the martensitic transformation in a Ti–Ni alloy. They analyzed the evolution of electrical resistance during isothermal holding stages and concluded that the variations were a consequence of the isothermal transition between austenite and martensite. In the following we will demonstrate that the discussed data do not allow the interpretation presented and that the isothermal nature is not proved. KW - Thermal activation KW - Titanium–nickel alloy KW - Shape memory alloy KW - Nucleation PY - 2015 DO - https://doi.org/10.1016/j.scriptamat.2014.10.009 SN - 1359-6462 SN - 1872-8456 VL - 98 SP - 68 EP - 70 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-32401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Tuaev, X. A1 - Wuithschick, M. A1 - Fischer, A. A1 - Thünemann, Andreas A1 - Rademann, K. A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles JF - ACS nano N2 - The formation mechanisms of silver nanoparticles using aqueous silver perchlorate solutions as precursors and sodium borohydride as reducing agent were investigated based on time-resolved in situ experiments. This contribution addresses two important issues in colloidal science: (i) differences and analogies between growth processes of different metals such as gold and silver and (ii) the influence of a steric stabilizing agent on the growth process. The results reveal that a growth due to coalescence is a fundamental growth principle if the monomer-supplying chemical reaction is faster than the actual particle formation. KW - Silver nanoparticle growth KW - Formation mechanisms KW - Nucleation KW - SAXS PY - 2012 DO - https://doi.org/10.1021/nn301724z SN - 1936-0851 VL - 6 IS - 7 SP - 5791 EP - 5802 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-26427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Gerhard T1 - Crystallization in Thin Amorphous Films JF - Zeitschrift für Metallkunde KW - Nucleation KW - Amorphous alloys KW - Crystallization KW - Surface energy KW - Strain energy KW - Thin film PY - 2000 SN - 0179-4841 SN - 0044-3093 PB - Hanser CY - München AN - OPUS4-898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stawski, Tomasz A1 - Besselink, R. A1 - Chatzipanagis, K. A1 - Hövelmann, J. A1 - Benning, L. G. A1 - Van Driessche, E. S. T1 - Nucleation Pathway of Calcium Sulfate Hemihydrate (Bassanite) from Solution: Implications for Calcium Sulfates on Mars JF - The Journal of Physical Chemistry C N2 - CaSO4 minerals (i.e., gypsum, anhydrite, and bassanite) are widespread in natural and industrial environments. During the last several years, a number of studies have revealed that nucleation in the CaSO4–H2O system is nonclassical, where the formation of crystalline phases involves several steps. Based on these recent insights, we have formulated a tentative general model for calcium sulfate precipitation from solution. This model involves primary species that are formed through the assembly of multiple Ca2+ and SO42– ions into nanoclusters. These nanoclusters assemble into poorly ordered (i.e., amorphous) hydrated aggregates, which in turn undergo ordering into coherent crystalline units. The thermodynamic (meta)stability of any of the three CaSO4 phases is regulated by temperature, pressure, and ionic strength, with gypsum being the stable form at low temperatures and low-to-medium ionic strengths and anhydrite being the stable phase at high temperatures and at lower temperature for high salinities. Bassanite is metastable across the entire phase diagram but readily forms as the primary phase at high ionic strengths across a wide range of temperatures and can persist up to several months. Although the physicochemical conditions leading to bassanite formation in aqueous systems are relatively well established, nanoscale insights into the nucleation mechanisms and pathways are still lacking. To fill this gap and to further improve our general model for calcium sulfate precipitation, we conducted in situ scattering measurements at small-angle X-ray scattering and wide-angle X-ray scattering and complemented these with in situ Raman spectroscopic characterization. Based on these experiments, we show that the process of formation of bassanite from aqueous solutions is very similar to the formation of gypsum: it involves the aggregation of small primary species into larger disordered aggregates, only from which the crystalline phase develops. These data thus confirm our general model of CaSO4 nucleation and provide clues to explain the abundant occurrence of bassanite on the surface of Mars (and not on the surface of Earth). KW - Gypsum' SAXS KW - Calcium sulfate KW - Bassanite KW - Nucleation PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c01041 VL - 124 IS - 15 SP - 8411 EP - 8422 PB - American Chemical Society AN - OPUS4-50849 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -