TY - JOUR A1 - Altenkirch, J. A1 - Gibmeier, J. A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Nitschke-Pagel, T. A1 - Hofmann, M. T1 - In situ study of structural integrity of low transformation temperature (LTT)-welds JF - Materials science and engineering A N2 - We discuss the stability of weld residual strain under static and quasi cyclic transverse tensile loading in the elastic and elastic–plastic region. The test welds were joined with low transformation temperature weld filler materials with 10 wt% Cr and varying Ni-content from 8 to 12 wt%. Using neutron diffraction the residual lattice strain in the martensitic α'- and austenitic γ-phase in the fusion zone as well as the ferritic α-phase in the heat affected zone and base metal as induced by welding, superimposed by stepwise tensile loading and after unloading was measured. The amount of retained austenite in the fusion zone increases with increasing Ni-content, but it decreases with increasing load level due to stress induced martensite formation. In the as-welded condition the transverse macroscopic residual lattice strain was found to be in low compression in the fusion zone in each weld, while the heat affected zone was in tension. Local plastic deformation of the γ-phase as a result of yielding during tensile loading in combination with the change in phase fraction resulted in increased macroscopic compression in the fusion zone. The reduced yield strength in the heat affected zone resulted in plastic deformation and a considerable shift into compression. Comparison with the cross weld distribution of the hardness and FWHM of the neutron diffraction interference lines supported the assumption of plastic deformation of the γ- and α-phase in the fusion and heat affected zone, respectively, while the α'-phase in the fusion zone was stressed within the elastic regime only. Microstructural observations as well as measurement of the local γ-phase fraction by means of laboratory X-ray diffraction in the fusion zone strengthen these observations. KW - Low transformation temperature KW - Residual stress KW - Neutron diffraction PY - 2011 DO - https://doi.org/10.1016/j.msea.2011.03.091 SN - 0921-5093 SN - 1873-4936 VL - 528 IS - 16-17 SP - 5566 EP - 5575 PB - Elsevier CY - Amsterdam AN - OPUS4-24359 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Vogel, S. C. T1 - Simultaneous determination of high-temperature crystal structure and texture of synthetic porous cordierite JF - Journal of Applied of Crystallography N2 - The evolution of the crystal structure and crystallographic texture of porous synthetic cordierite was studied by in situ high-temperature neutron diffraction up to 1373 K, providing the first in situ high-temperature texture measurement of this technologically important material. It was observed that the Crystal texture slightly weakens with increasing temperature, concurrently with subtle changes in the crystal structure. These changes are in agreement with previous work, leading the authors to the conclusion that high-temperature Neutron diffraction allows reliable crystallographic characterization of materials with moderate texture. It was also observed that structural changes occur at about the glass transition temperature of the cordierite glass (between 973 and 1073 K). Crystal structure refinements were conducted with and without quantitative texture analysis being part of the Rietveld refinement, and a critical comparison of the results is presented, contributing to the sparse body of literature on combined texture and crystal structure refinements. KW - Synthetic extruded cordierite KW - Crystal texture KW - Neutron diffraction KW - High temperature KW - Atomic displacement parameters KW - Atomic distances PY - 2017 DO - https://doi.org/10.1107/S160057671700406X SN - 1600-5767 VL - 50 IS - Part 3 SP - 749 EP - 762 PB - IUCR CY - New York AN - OPUS4-40584 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Bokuchava, G. A1 - Gorshkova, Y. A1 - Fernández, R. A1 - González-Doncel, G. T1 - Characterization of precipitation in 2000 series aluminium alloys using neutron diffraction, sans and sem methods JF - Romanian Reports in Physics N2 - Combination of high-resolution time-of-flight (TOF) Neutron diffraction, scanning electron microscopy (SEM) and small angle neutron scattering (SANS) have been used to study hardening precipitation in 2014Al and 2124Al alloys. Neutron diffraction experiment revealed presence of tetragonal CuAl2 Phase (θ/θ´ precipitates) in 2014Al alloy and orthorhombic CuMgAl2 Phase (S-precipitates) in 2124Al alloy. SEM image analysis revealed that the θ/θ´-precipitates have platelet morphology while the S-precipitates exhibit rod-like shapes. From SANS data analysis the characteristic dimensions of precipitate particles and their polydisperse distributions were estimated. KW - Neutron diffraction KW - Small angle neutron scattering KW - Scanning electron microscopy KW - Precipitation hardening PY - 2019 SN - 1221-1451 SN - 1841-8759 VL - 71 IS - 1 SP - 502, 1 EP - 12 PB - Academia Romana CY - Bucharest AN - OPUS4-48390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Garcés, G. A1 - Requena, G. T1 - The role of reinforcement orientation on the damage evolution of AlSi12CuMgNi +15% Al2O3 under compression JF - Scripta Materialia N2 - Internal damage of an AlSi12CuMgNi alloy reinforced with planar randomshort fibres has been investigated after compression. This damage strongly influences the load partition between matrix and reinforcement. For fibres perpendicular to the applied load, breakage and interconnected cracks appear in significantly higher volume fraction than with fibres parallel to load. KW - Metal Matrix Composites KW - Damage KW - Load partition KW - Synchrotron CT KW - Neutron diffraction PY - 2016 VL - 122 SP - 115 EP - 118 PB - Elsevier Ltd. AN - OPUS4-37975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni A1 - Fernández, R. A1 - González-Doncel, G. A1 - Garcés, G. T1 - Towards a comprehensive understanding of creep: Microstructural dependence of the pre-exponential term in Al JF - Materials Science & Engineering A N2 - We show that the equation proposed by Takeuchi and Argon to explain the creep behavior of Al–Mg solid solution can be used to describe also the creep behavior of pure aluminum. In this frame, it is possible to avoid the use of the classic pre-exponential fitting parameter in the power law equation to predict the minimum creep strain rate. The effect of the fractal arrangement of dislocations, developed at the mesoscale, must be considered to fully explain the experimental data. These ideas allow improving the recently introduced SSTC model, fully describing the primary and secondary creep regimes of aluminum alloys without the need for fitting. Creep data from commercially pure Al99.8% and Al–Mg alloys tested at different temperatures and stresses are used to validate the proposed ideas. KW - Creep KW - Aluminum alloys KW - Dislocations KW - Fractal KW - Stress exponent KW - Neutron diffraction PY - 2020 DO - https://doi.org/10.1016/j.msea.2020.139036 VL - 776 SP - 139036 AN - OPUS4-50437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabeza, Sandra A1 - Mishurova, Tatiana A1 - Garces, G. A1 - Requena, G. A1 - Bruno, Giovanni A1 - Sevostianov, I. T1 - Stress-induced damage evolution in cast AlSi12CuMgNi alloy with one- and two ceramic reinforcements JF - Journal of Material Science N2 - Two composites, consisting of an as-cast AlSi12CuMgNi alloy reinforced with 15%vol. Al2O3 short fibres and with 7%vol. Al2O3 short fibres + 15%vol. SiC particles were studied. Synchrotron computed tomography disclosed distribution, orientation, and volume fraction of the different phases. In-situ compression tests during neutron diffraction in direction parallel to the fibres plane revealed the load partition between phases. Internal damage (fragmentation) of the Si phase and Al2O3 fibres was directly observed in CT reconstructions. Significant debonding between Al-matrix and SiC particles was also found. Finally, based on the Maxwell scheme, a micro-mechanical model was utilized for the new composite with two ceramic reinforcements; it rationalizes the experimental data, and predicts the evolution of all internal stress components in each phase. KW - Computed tomography KW - Metal matrix composite KW - Load partition KW - Neutron diffraction PY - 2017 DO - https://doi.org/10.1007/s10853-017-1182-7 SN - 0022-2461 SN - 1573-4803 VL - 52 IS - 17 SP - 10198 EP - 10216 PB - Springer AN - OPUS4-40572 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Koos, R. A1 - Sevostianov, I. A1 - Garces, G. A1 - Requena, G. A1 - Fernández, R. A1 - Bruno, Giovanni T1 - The role of intermetallics in stress partitioning and damage evolution of AlSi12CuMgNi alloy JF - Materials Science & Engineering A N2 - Load partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnected network, but also improved the strength of the Al matrix, and the ability of the alloy constituents to bear mechanical load. KW - Aluminum alloys KW - Neutron diffraction KW - Micromechanical modeling KW - Internal stress KW - Computed tomography PY - 2018 DO - https://doi.org/10.1016/j.msea.2018.08.070 VL - 736 SP - 453 EP - 464 PB - Elsevier B.V. AN - OPUS4-45927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Farahbod-Sternahl, L. A1 - Saliwan Neumann, Romeo A1 - Hofmann, M. A1 - Bruno, Giovanni T1 - On the determination of residual stresses in additively manufactured lattice structures JF - Journal of Applied Crystallography N2 - The determination of residual stresses becomes more complicated with increasing complexity of the structures investigated. Additive manufacturing techniques generally allow the production of ‘lattice structures’ without any additional manufacturing step. These lattice structures consist of thin struts and are thus susceptible to internal stress-induced distortion and even cracks. In most cases, internal stresses remain locked in the structures as residual stress. The determination of the residual stress in lattice structures through nondestructive neutron diffraction is described in this work. It is shown how two difficulties can be overcome: (a) the correct alignment of the lattice structures within the neutron beam and (b) the correct determination of the residual stress field in a representative part of the structure. The magnitude and the direction of residual stress are discussed. The residual stress in the strut was found to be uniaxial and to follow the orientation of the strut, while the residual stress in the knots was more hydrostatic. Additionally, it is shown that strain measurements in at least seven independent directions are necessary for the estimation of the principal stress directions. The measurement directions should be chosen according to the sample geometry and an informed choice on the possible strain field. If the most prominent direction is not measured, the error in the calculated stress magnitude increases considerably. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Principal stress components KW - Neutron diffraction KW - Lattice structures PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520663 DO - https://doi.org/10.1107/S1600576720015344 SN - 1600-5767 VL - 54 SP - 228 EP - 236 AN - OPUS4-52066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gibmeier, J. A1 - Obelode, E. A1 - Altenkirch, J. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Residual stress in steel fusion welds joined using low transformation temperature (LTT) filler material JF - Materials science forum N2 - Welding residual stress is of major concern for structural integrity assessment in industrial components. Shear and volume strains resulting from the austenite-martensite-transformation affect the development of residual stress during welding. Controlling the phase transformation allows adjustment of the welding residual stress. Low transformation temperature (LTT) weld filler materials exhibiting reduced MS-temperatures allow postponing the phase transformation. The associated strain arising from the delayed transformation compensates for the thermal contraction strains and as such may reduce tensile or even introduce compressive residual stress. In this article we discuss the tri-axial residual stress distribution in 15 mm S690Q steel plates joined with LTT filler materials with 10 wt% Cr and a Ni-content that varies from 8 to 12 wt%. Using complementary synchrotron X-ray and neutron diffraction stress analysis the macroscopic residual stress was derived from the phase specific lattice strain and phase fraction of martensite and retained austenite, respectively. The local phase specific unstrained lattice parameters were determined using stress relieved combs. The investigation revealed increasing phase fraction of retained austenite with increasing Ni-content. Further, independent of the Ni-content in each weld in the fusion zone, significant compressive residual stresses were found in the longitudinal direction, which are balanced by tensile residual stresses in the heat affected zone (HAZ). In the weld transverse and normal direction the stress distribution is qualitatively similar but less in magnitude. The increased amount of retained austenite reduces the compressive stress arising from shear and volume strains during the delayed phase transformation and therefore no significant increase in compression was observed for decreasing MS-temperatures. KW - Welding residual stresses KW - Neutron diffraction KW - LTT filler materials PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/MSF.768-769.620 SN - 0255-5476 VL - 768-769 SP - 620 EP - 627 PB - Trans Tech Publications CY - Aedermannsdorf, Switzerland AN - OPUS4-29706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ivanov, S. A1 - Artinov, Antoni A1 - Zemlyakov, E. A1 - Karpov, I. A1 - Rylov, S. A1 - Em, V. T1 - Spatiotemporal Evolution of Stress Field during Direct Laser Deposition of Multilayer Thin Wall of Ti-6Al-4V JF - Materials N2 - The present work seeks to extend the level of understanding of the stress field evolution during direct laser deposition (DLD) of a 3.2 mm thick multilayer wall of Ti-6Al-4V alloy by theoretical and experimental studies. The process conditions were close to the conditions used to produce large-sized structures by the DLD method, resulting in specimens having the same thermal history. A simulation procedure based on the implicit finite element method was developed for the theoretical study of the stress field evolution. The accuracy of the simulation was significantly improved by using experimentally obtained temperature-dependent mechanical properties of the DLD-processed Ti-6Al4V alloy. The residual stress field in the buildup was experimentally measured by neutron diffraction. The stress-free lattice parameter, which is decisive for the measured stresses, was determined using both a plane stress approach and a force-momentum balance. The influence of the inhomogeneity of the residual stress field on the accuracy of the experimental measurement and the validation of the simulation procedure are analyzed and discussed. Based on the numerical results it was found that the non-uniformity of the through-thickness stress distribution reaches a maximum in the central cross-section, while at the buildup ends the stresses are distributed almost uniformly. The components of the principal stresses are tensile at the buildup ends near the substrate. Furthermore, the calculated equivalent plastic strain reaches 5.9% near the buildup end, where the deposited layers are completed, while the plastic strain is practically equal to the experimentally measured ductility of the DLD-processed alloy, which is 6.2%. The experimentally measured residual stresses obtained by the force-momentum balance and the plane stress approach differ slightly from each other. KW - Direct laser deposition KW - Finite element simulation KW - Neutron diffraction KW - Residual stresses KW - Ti-6Al-4V KW - Mechanical properties PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542444 DO - https://doi.org/10.3390/ma15010263 VL - 15 IS - 263 SP - 1 EP - 20 PB - MDPI AN - OPUS4-54244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -