TY - JOUR A1 - Tiebe, Carlo A1 - Hübert, Thomas A1 - Koch, B. A1 - Ritter, U. A1 - Stephan, Ina T1 - Investigation of gaseous metabolites from moulds by ion mobility spectrometry (IMS) and gas chromatography-mass spectrometry (GC-MS) JF - International journal for ion mobility spectrometry N2 - The metabolism of moulds results in the formation of various microbial volatile organic compounds (MVOCs). These substances can be used as an indicator for the presence of moulds in the indoor environment. Three different mould strains were cultivated on culture media and IMS spectra of gaseous mould metabolites were recorded using a portable mini system with a tritium source and a 5 cm drift cell. The headspace spectra are characteristic for mould species and their age. Typical gaseous components of the metabolites were identified and compared with results obtained from gas chromatography using a mass spectrometer detector. It was observed that the MVOCs formation depends on mould species and their growing stage with a maximum of MVOCs emission occurring during the first 10 days. These preliminary results show that IMS can be applied to detect MVOCs in indoor environment and indicate hidden mould growth. KW - Mould detection KW - MVOC KW - Biochemical sensor system KW - Ion mobility spectrometry KW - IMS KW - Gas chromatography KW - Mass spectrometry KW - Principal component analysis PY - 2010 DO - https://doi.org/10.1007/s12127-009-0035-8 SN - 1435-6163 VL - 13 IS - 1 SP - 17 EP - 24 PB - Springer CY - Berlin; Heidelberg AN - OPUS4-21234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tiebe, Carlo A1 - Miessner, H. A1 - Koch, B. A1 - Hübert, Thomas T1 - Detection of microbial volatile organic compounds (MVOCs) by ion-mobility spectrometry JF - Analytical and bioanalytical chemistry N2 - Traces of microbial volatile organic compounds (MVOCs) in air can indicate the presence of growth of moulds in the indoor environment. Ion-mobility spectrometry is a very promising method for detection of these MVOCs, because of its high sensitivity. For development of an in-situ method for detection of MVOCs, a portable ion-mobility spectrometer (IMS) was used and test gases of 14 MVOCs and their respective mixtures were investigated. IMS spectra were recorded as a function of concentration of MVOCs in air. Drift time and mobility of reactant ions formed in positive polarity mode were determined and correlated with the mass-to-charge ratio (m/z) of the MVOCs investigated. The estimated detection limit has a specific value for each MVOC and is in the range 3 to 96 µg m-3 (1 to 52 ppbV). Indoor trials show that IMS can indicate hidden mould growth. KW - Trace gas analysis KW - MVOCs KW - Ion-mobility spectrometry KW - Mould detection PY - 2009 DO - https://doi.org/10.1007/s00216-009-3147-4 SN - 1618-2642 SN - 1618-2650 VL - 395 IS - 7 SP - 2313 EP - 2323 PB - Springer CY - Berlin AN - OPUS4-20082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -