TY - JOUR A1 - Gluth, Gregor A1 - Grengg, C. A1 - Ukrainczyk, N. A1 - Mittermayr, F. A1 - Dietzel, M. T1 - Acid resistance of alkali-activated materials: Recent advances and research needs JF - RILEM Technical Letters N2 - Cementitious materials are frequently applied in environments in which they are exposed to acid attack, e.g., in sewer systems, biogas plants, and agricultural/food-related industries. Alkali-activated materials (AAMs) have repeatedly been shown to exhibit a remarkably high resistance against attack by organic and inorganic acids and, thus, are promising candidates for the construction and the repair of acid-exposed structures. However, the reaction mechanisms and processes affecting the acid resistance of AAMs have just recently begun to be understood in more detail. The present contribution synthesises these advances and outlines potentially fruitful avenues of research. The interaction between AAMs and acids proceeds in a multistep process wherein different aspects of deterioration extend to different depths, complicating the overall determination of acid resistance. Partly due to this indistinct definition of the ‘depth of corrosion’, the effects of the composition of AAMs on their acid resistance cannot be unambiguously identified to date. Important parallels exist between the deterioration of low-Ca AAMs and the weathering/corrosion of minerals and glasses (dissolution-reprecipitation mechanism). Additional research requirements relate to the deterioration mechanism of high-Ca AAMs; how the character of the corroded layer influences the rate of deterioration; the effects of shrinkage and the bond between AAMs and substrates. KW - Alkali-activated materials KW - Acid attack KW - Acid resistance KW - Concrete repair KW - MIC PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557376 DO - https://doi.org/10.21809/rilemtechlett.2022.157 SN - 2518-0231 VL - 7 SP - 58 EP - 67 PB - RILEM Publications SARL CY - Paris AN - OPUS4-55737 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grengg, C. A1 - Gluth, Gregor A1 - Mittermayr, F. A1 - Ukrainczyk, N. A1 - Bertmer, M. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Leis, A. A1 - Dietzel, M. T1 - Deterioration mechanism of alkali-activated materials in sulfuric acid and the influence of Cu: A micro-to-nano structural, elemental and stable isotopic multi-proxy study JF - Cement and concrete research N2 - In this study, a multi-proxy approach combining 29Si, 27Al and 1H MAS-NMR, FEG-EPMA, XANES at the Cu K-edge and XRD analytics with hydrochemical tools such as ICP-OES analyses, oxygen-isotope signatures, and thermodynamic modelling was applied to K-silicate-activated metakaolin specimens - with and without CuSO4·5H2O addition - exposed to sulfuric acid at pH = 2 for 35 days. The results revealed a multistage deterioration mechanism governed by (i) acid diffusion, (ii) leaching of K-A-S-H, (iii) microstructural damage related to precipitation of expansive (K,Ca,Al)-sulfate-hydrate phases (iv) complete dissolution of the K-A-S-H framework, (v) and formation of silica gel in the outermost corroded regions. Copper ions were mainly located in layered spertiniite-chrysocolla-like phases in the as-cured materials. The results demonstrate an overall negative effect of Cu addition on chemical material durability, implying that the reported higher durability of Cu-doped AAM in biocorrosion environments can be best explained by bacteriostatic effects. KW - Alkali-activated materials KW - Acid resistance KW - Microbially induced corrosion KW - MIC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520567 DO - https://doi.org/10.1016/j.cemconres.2021.106373 SN - 0008-8846 VL - 142 SP - 1 EP - 15 PB - Elsevier CY - Oxford AN - OPUS4-52056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grengg, C. A1 - Koraimann, G. A1 - Ukrainczyk, N. A1 - Rudic, O. A1 - Luschnig, S. A1 - Gluth, Gregor A1 - Radtke, Martin A1 - Dietzel, M. A1 - Mittermayr, F. T1 - Cu- and Zn-doped alkali activated mortar – Properties and durability in (bio)chemically aggressive wastewater environments JF - Cement and concrete research N2 - Metakaolin-based alkali activated mortars (AAM) - with and without CuSO4·5H2O and ZnO addition (mass ratio Mn+/solid binder 0.08% to 1.7%) - were casted and exposed within an extensive long-term field campaign over the period of 20 months to a sewer basin, strongly affected by biogenic acid corrosion. (Un-)exposed AAM were tested regarding their physicochemical and microstructural properties, bioreceptivity and overall durability. Metal addition led to a retarding effect during alkali-activation reaction, as well as to an increase in open porosity of up to 3.0% and corresponding lower compressive strength of up to 10.9%. Reduced microbial colonization and diversity were observed on AAM with Cu, while Zn addition led to increased biodiversity. We propose that the observed higher durability of Cu-doped AAM is due to antibacterial effects and associated reduction of biogenic acid production, superseding overall negative effects of metal-dosage on physical material properties. Observed lower durability of Zn-doped AAM was related to combined negative physicochemical and microbial effects. KW - Microbially induced corrosion KW - Alkali-activated materials KW - Biogenic acid corrosion KW - Biogene Schwefelsäurekorrosion KW - MIC PY - 2021 DO - https://doi.org/10.1016/j.cemconres.2021.106541 SN - 0008-8846 VL - 149 SP - 1 EP - 15 PB - Elsevier CY - Oxford AN - OPUS4-53070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knisz, J. A1 - Eckert, R. A1 - Gieg, L. A1 - Koerdt, Andrea A1 - Lee, J. A1 - Silva, E. A1 - Skovhus, T. L. A1 - An-Stepec, B. A. A1 - Wade, S. A. T1 - Microbiologically Influenced Corrosion - More than just Microorganisms JF - Microbiologically Influenced Corrosion - More than just Microorganisms N2 - Microbiologically influenced corrosion (MIC) is a phenomenon of increasing concern which affects various materials and sectors of society. MIC describes the effects, often negative, that a material can experience due to the presence of microorganisms. Unfortunately, although several research groups and industrial actors worldwide have already addressed MIC, discussions are fragmented, while information sharing and willingness to reach out to other disciplines is limited. A truly interdisciplinary approach, that would be logical for this material/biology/chemistry-related challenge, is rarely taken. In this review we highlight critical non-biological aspects of MIC that can sometimes be overlooked by microbiologists working on MIC but are highly relevant for an overall understanding of this phenomenon. Here, we identify gaps, methods and approaches to help solve MIC related challenges, with an emphasis on the MIC of metals. We also discuss the application of existing tools and approaches for managing MIC and propose ideas to promote an improved understanding of MIC. Furthermore, we highlight areas where the insights and expertise of microbiologists are needed to help progress this field. KW - MIC KW - Biodeterioration KW - Biocorrosion KW - Interdisciplinarity KW - Multiple lines of evidence PY - 2023 DO - https://doi.org/10.1093/femsre/fuad041 SN - 0168-6445 VL - 47 IS - 5 SP - 1 EP - 70 PB - FEMS Microbiology Reviews AN - OPUS4-58066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koerdt, Andrea T1 - Mikrobiell beeinflusste Korrosion – die Testungsart entscheidet JF - Karriere, Köpfe & Konzepte N2 - In diesem kurzem Artikel wird die neue Testungsart druch Hi-Tension vorgestellt. Der Hauptfokus liegt dabei auf die Umweltsimulations-Säule, mit deren Hilfe die bisher bekannten Korrosionsraten von methanogenen Archaea signifikant erhöht wurden. KW - Hi-Tension KW - MIC KW - Methanogene KW - Umweltsimulation PY - 2021 DO - https://doi.org/10.1007/s12268-021-1507-7 VL - 27 SP - 100 EP - 100 PB - BIOspektrum Springer AN - OPUS4-52193 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor JF - Scientific reports N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, J. A1 - Jiang, T. A1 - Ji, Y. A1 - An-Stepec, Biwen Annie A1 - Koerdt, Andrea A1 - Cai, Z. A1 - Dong, C. A1 - Ge, Y. A1 - Qi, Z. T1 - Water-Fueled Autocatalytic Bactericidal Pathway based on e-Fenton-Like Reactions Triggered by Galvanic Corrosion and Extracellular Electron Transfer JF - Journal of Hazardous Materials N2 - Water is generally considered to be an undesirable substance in fuel system, which may lead to microbial contamination. The antibacterial strategies that can turn water into things of value with high disinfection efficacy have been urgently needed for fuel system. Here, we reveal a water-fueled autocatalytic bactericidal pathway comprised by bi-metal micro-electrode system, which can spontaneously produce reactive oxygen species (mainly H2O2 and O2•–) by the electron Fenton-like reaction in water medium without external energy., The respiratory chain component of bacteria and the galvanic corrosion on the coated metals were two electron sources in the system. The specific model of Ag-Ru water-fueled autocatalytic (WFA) microelectrode particles presents extremely high disinfection efficiency (>99.9999%) in less than one hour for three aerobic bacteria (Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis) in LB media and high disinfection efficiency for the anaerobic bacteria (Desulfovibrio alaskensis) in Postgate E media without natural light irradiation. Overall, the novel WFA Ag-Ru antibacterial material explored in this study has a high potential for sterilizing applications in fuel system and this work provides the potential for the development of non-chemical and water-based antibacterial materials, such as WFA Ag-Ru antibacterial coating on stainless steel. KW - Fenton-like reaction KW - Reactive oxygen species KW - Disinfection Fuel KW - Silver KW - Ruthenium KW - MIC PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555186 DO - https://doi.org/10.1016/j.jhazmat.2022.129730 SN - 0304-3894 VL - 440 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-55518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -