TY - JOUR A1 - Abere, M. J. A1 - Zhong, M. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Ultrafast laser-induced morphological transformations JF - MRS Bulletin N2 - Ultrafast laser processing can be used to realize various morphological surface transformations, ranging from direct contour shaping to large-area-surface functionalization via the generation of “self-ordered” micro- and nanostructures as well as their hierarchical hybrids. Irradiation with high-intensity laser pulses excites materials into extreme conditions, which then return to equilibrium through these unique surface transformations. In combination with suitable top-down or bottom-up manufacturing strategies, such laser-tailored surface morphologies open up new avenues toward the control of optical, chemical, and mechanical surface properties, featuring various technical applications especially in the fields of photovoltaics, tribology, and medicine. This article reviews recent efforts in the fundamental understanding of the formation of laser-induced surface micro- and nanostructures and discusses some of their emerging capabilities. KW - Laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface morphology KW - Oxidation KW - Tribology PY - 2016 DO - https://doi.org/10.1557/mrs.2016.271 SN - 0883-7694 SN - 1938-1425 VL - 41 IS - 12 SP - 969 EP - 974 PB - Cambride University Press AN - OPUS4-38637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn T1 - Quo vadis LIPSS? - Recent and future trends on laser-induced periodic surface structures JF - Nanomaterials N2 - Nanotechnology and lasers are among the most successful and active fields of research and technology that have boomed during the past two decades. Many improvements are based on the controlled manufacturing of nanostructures that enable tailored material functionalization for a wide range of industrial applications, electronics, medicine, etc., and have already found entry into our daily life. One appealing approach for manufacturing such nanostructures in a flexible, robust, rapid, and contactless one-step process is based on the generation of laser-induced periodic surface structures (LIPSS). This Perspectives article analyzes the footprint of the research area of LIPSS on the basis of a detailed literature search, provides a brief overview on its current trends, describes the European funding strategies within the Horizon 2020 programme, and outlines promising future directions. KW - Laser-induced periodic surface structures (LIPSS) KW - Direct laser interference patterning (DLIP) KW - Surface functionalization KW - Literature survey KW - European funding strategies PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513530 DO - https://doi.org/10.3390/nano10101950 SN - 2079-4991 VL - 10 IS - 10 SP - 1950-1 EP - 1950-19 PB - MDPI CY - Basel AN - OPUS4-51353 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Ten Open Questions about Laser-Induced Periodic Surface Structures JF - Nanomaterials N2 - Laser-induced periodic surface structures (LIPSS) are a simple and robust route for the nanostructuring of solids that can create various surface functionalities featuring applications in optics, medicine, tribology, energy technologies, etc. While the current laser technologies already allow surface processing rates at the level of m2/min, industrial applications of LIPSS are sometimes hampered by the complex interplay between the nanoscale surface topography and the specific surface chemistry, as well as by limitations in controlling the processing of LIPSS and in the long-term stability of the created surface functions. This Perspective article aims to identify some open questions about LIPSS, discusses the pending technological limitations, and sketches the current state of theoretical modelling. Hereby, we intend to stimulate further research and developments in the field of LIPSS for overcoming these limitations and for supporting the transfer of the LIPSS technology into industry. KW - Laser-induced periodic surface structures (LIPSS) KW - Industrial application KW - Functional properties KW - Surface functionalization KW - Modelling PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539503 DO - https://doi.org/10.3390/nano11123326 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 21 PB - MDPI CY - Basel, Switzerland AN - OPUS4-53950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Gräf, S. T1 - Maxwell Meets Marangoni — A Review of Theories on Laser‐Induced Periodic Surface Structures JF - Laser & Photonics Reviews N2 - Surface nanostructuring enables the manipulation of many essential surface properties. With the recent rapid advancements in laser technology, a contactless large‐area processing at rates of up to m2 s−1 becomes feasible that allows new industrial applications in medicine, optics, tribology, biology, etc. On the other hand, the last two decades enable extremely successful and intense research in the field of so‐called laser‐induced periodic surface structures (LIPSS, ripples). Different types of these structures featuring periods of hundreds of nanometers only—far beyond the optical diffraction limit—up to several micrometers are easily manufactured in a single‐step process and can be widely controlled by a proper choice of the laser processing conditions. From a theoretical point of view, however, a vivid and very controversial debate emerges, whether LIPSS originate from electromagnetic effects or are caused by matter reorganization. This article aims to close a gap in the available literature on LIPSS by reviewing the currently existent theories of LIPSS along with their numerical implementations and by providing a comparison and critical assessment of these approaches. KW - Laser-induced periodic surface structures (LIPSS) KW - Electromagnetic theories KW - Matter reorganization theories KW - Surface plasmon polaritons KW - Self-organization PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-514089 DO - https://doi.org/10.1002/lpor.202000215 SN - 1863-8899 VL - 14 IS - 10 SP - 2000215-1 EP - 2000215-25 PB - Wiley CY - Berlin AN - OPUS4-51408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Kirner, Sabrina V. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Laser-induced periodic surface structures — a scientific evergreen JF - IEEE Journal of Selected Topics in Quantum Electronics N2 - Laser-induced periodic surface structures (LIPSS, ripples) are a universal phenomenon and can be generated on almost any material upon irradiation with linearly polarized radiation. With the availability of ultrashort laser pulses, LIPSS have gained an increasing attraction during the past decade, since these structures can be generated in a simple single-step process, which allows a surface nanostructuring for tailoring optical, mechanical, and chemical surface properties. In this study, the current state in the field of LIPSS is reviewed. Their formation mechanisms are analyzed in ultrafast time-resolved scattering, diffraction, and polarization constrained double-pulse experiments. These experiments allow us to address the question whether the LIPSS are seeded via ultrafast energy deposition mechanisms acting during the absorption of optical radiation or via self-organization after the irradiation process. Relevant control parameters of LIPSS are identified, and technological applications featuring surface functionalization in the fields of optics, fluidics, medicine, and tribology are discussed. KW - Laser ablation KW - Nanostructures KW - Surface functionalization KW - Surface texture KW - Laser-induced periodic surface structures (LIPSS) PY - 2017 DO - https://doi.org/10.1109/JSTQE.2016.2614183 SN - 1077-260X SN - 1558-4542 VL - 23 IS - 3 SP - 9000615 PB - IEEE AN - OPUS4-38633 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina A1 - Koter, Robert A1 - Pentzien, Simone A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications JF - Applied Surface Science N2 - Titanium nitride (TiN) was coated on different substrate materials, namely pure titanium (Ti), titanium alloy (Ti6Al4V) and steel (100Cr6), generating 2.5 μm thick TiN layers. Using femtosecond laser pulses (30 fs, 790 nm, 1 kHz pulse repetition rate), large surface areas (5 mm × 5 mm) of laser-induced periodic surface structures (LIPSS) with sub-wavelength periods ranging between 470 nm and 600 nm were generated and characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). In tribological tests, coefficients of friction (COF) of the nanostructured surfaces were determined under reciprocating sliding conditions (1 Hz, 1.0 N normal load) against a 10-mm diameter ball of hardened 100Cr6 steel during 1000 cycles using two different lubricants, namely paraffin oil and engine oil. It turned out that the substrate material, the laser fluence and the lubricant are crucial for the tribological performance. However, friction and wear could not be significantly reduced by LIPSS on TiN layers in comparison to unstructured TiN surfaces. Finally, the resulting wear tracks on the nanostructured surfaces were investigated with respect to their morphology (OM, SEM), depth (WLIM) and chemical composition by energy dispersive X-ray spectroscopy (EDX) and, on one hand, compared with each other, on the other hand, with non-structured TiN surfaces. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Titanium nitride films KW - Friction KW - Wear PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0169433216322486 DO - https://doi.org/10.1016/j.apsusc.2016.10.132 SN - 0169-4332 SN - 1873-5584 VL - 418 IS - Part B SP - 572 EP - 579 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-40507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Kirner, Sabrina V. A1 - Griepentrog, Michael A1 - Spaltmann, Dirk A1 - Krüger, Jörg T1 - Femtosecond laser texturing of surfaces for tribological applications JF - Materials N2 - Laser texturing is an emerging technology for generating surface functionalities on basis of optical, mechanical, or chemical properties. Taking benefit of laser sources with ultrashort (fs) pulse durations features outstanding precision of machining and negligible rims or burrs surrounding the laser-irradiation zone. Consequently, additional mechanical or chemical post-processing steps are usually not required for fs-laser surface texturing (fs-LST). This work aimed to provide a bridge between research in the field of tribology and laser materials processing. The paper reviews the current state-of-the-art in fs-LST, with a focus on the tribological performance (friction and wear) of specific self-organized surface structures (so-called ripples, grooves, and spikes) on steel and titanium alloys. On the titanium alloy, specific sickle-shaped hybrid micro-nanostructures were also observed and tribologically tested. Care is taken to identify accompanying effects affecting the materials hardness, superficial oxidation, nano- and microscale topographies, and the role of additives contained in lubricants, such as commercial engine oil. KW - Femtosecond laser processing KW - Surface texture KW - Laser-induced periodic surface structures (LIPSS) KW - Friction KW - Wear PY - 2018 UR - http://www.mdpi.com/1996-1944/11/5/801 DO - https://doi.org/10.3390/ma11050801 SN - 1996-1944 VL - 11 IS - 5 SP - 801, 1 EP - 19 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-44905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Koter, Robert A1 - Hartelt, Manfred A1 - Spaltmann, Dirk A1 - Pentzien, Simone A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Tribological performance of femtosecond laser-induced periodic surface structures on titanium and a high toughness bearing steel JF - Applied surface science N2 - Laser-induced periodic surface structures (LIPSS, ripples) were processed on steel (X30CrMoN15-1) and titanium (Ti) surfaces by irradiation in air with linear polarized femtosecond laser pulses with a pulse duration of 30 fs at 790 nm wavelength. For the processing of large LIPSS covered surface areas (5 mm × 5 mm), the laser fluence and the spatial spot overlap were optimized in a sample-scanning geometry. The laser-processed surfaces were characterized by optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM). Spatial LIPSS periods between 450 and 600 nm were determined. The nanostructured surface regions were tribologically tested under reciprocal sliding conditions against a 10-mm diameter ball of hardened 100Cr6 steel. Paraffin oil and engine oil were used as lubricants for 1000 sliding cycles at 1 Hz with a normal load of 1.0 N. The corresponding wear tracks were analyzed by OM and SEM. In particular cases, the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient and the wear was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface. The experiments reveal the potential benefit of laser surface structuring for tribological applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Metals PY - 2015 DO - https://doi.org/10.1016/j.apsusc.2014.08.111 SN - 0169-4332 SN - 1873-5584 VL - 336 SP - 21 EP - 27 PB - North-Holland CY - Amsterdam AN - OPUS4-32861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Höhm, S. A1 - Rosenfeld, A. T1 - Femtosecond laser-induced periodic surface structures JF - Journal of laser applications N2 - The formation of laser-induced periodic surface structures (LIPSS) in different materials (metals, semiconductors, and dielectrics) upon irradiation with linearly polarized fs-laser pulses (τ~30–150 fs, λ~800 nm) in air environment is studied experimentally and theoretically. In metals, predominantly low-spatial-frequency-LIPSS with periods close to the laser wavelength λ are observed perpendicular to the polarization. Under specific irradiation conditions, high-spatial-frequency-LIPSS with sub-100-nm spatial periods (~λ/10) can be generated. For semiconductors, the impact of transient changes of the optical properties to the LIPSS periods is analyzed theoretically and experimentally. In dielectrics, the importance of transient excitation stages in the LIPSS formation is demonstrated experimentally using (multiple) double-fs-laser-pulse irradiation sequences. A characteristic decrease of the LIPSS periods is observed for double-pulse delays of less than 2 ps. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Ultrafast optical techniques KW - Silicon KW - Titanium KW - Silica PY - 2012 DO - https://doi.org/10.2351/1.4712658 SN - 1042-346X SN - 1938-1387 VL - 24 IS - 4 SP - 042006-1 EP - 042006-7 PB - Laser Institute of America CY - Orlando, Fla., USA AN - OPUS4-26198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Sokolowski‐Tinten, Klaus T1 - Probing Laser‐Driven Structure Formation at Extreme Scales in Space and Time JF - Laser & Photonics Reviews N2 - Irradiation of solid surfaces with high intensity, ultrashort laser pulses triggers a variety of secondary processes that can lead to the formation of transient and permanent structures over a large range of length scales from mm down to the nano‐range. One of the most prominent examples are LIPSS – Laser‐Induced Periodic Surface Structures. While LIPSS have been a scientific evergreen for of almost 60 years, experimental methods that combine ultrafast temporal with the required nm spatial resolution have become available only recently with the advent of short pulse, short wavelength free electron lasers. Here, the current status and future perspectives in this field are discussed by exploiting the unique possibilities of these 4th‐generation light sources to address by time‐domain experimental techniques the fundamental LIPSS‐question, namely why and how laser irradiation can initiate the transition of a “chaotic” (rough) surface from an aperiodic into a periodic structure. KW - Laser-induced periodic surface structures (LIPSS) KW - Free electron laser KW - Pump-probe experiments KW - Time-resolved scattering KW - Capillary waves PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595048 DO - https://doi.org/10.1002/lpor.202300912 SN - 1863-8899 VL - 18 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-59504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -