TY - JOUR A1 - Koter, Robert A1 - Weise, Matthias A1 - Hertwig, Andreas A1 - Beck, Uwe A1 - Krüger, Jörg T1 - Influence of film thickness and optical constants on femtosecond laser-induced ablation of hydrogenated amorphous carbon films JF - Journal of optoelectronics and advanced materials N2 - Hydrogenated amorphous carbon layers were deposited on BK7 glass in a plasma-assisted chemical vapor deposition process. Low and high refracting films with thicknesses d ranging from 11 nm to 5.8 µm were produced having refractive indices n between 1.68 and 2.41 and linear absorption coefficients of α~100 cm-1 and α~20000 cm-1 at 800 nm wavelength as a result of different plasma modes. Laser ablation thresholds Fth in dependence on d were determined using 30-fs laser pulses. Low absorbing layers show a constant Fth while Fth increases with rising d up to the optical penetration depth of light α-1 for high absorbing films. KW - Physical radiation damage (61.80.-x) KW - Laser-beam impact phenomena (79.20.Ds) KW - Radiation treatment (81.40.Wx) KW - Carbon (81.05.Uw) KW - Optical constants (78.20.Ci) PY - 2010 SN - 1454-4164 VL - 12 IS - 3 SP - 663 EP - 667 PB - INOE & INFM CY - Bucharest AN - OPUS4-21084 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Jurke, Mathias A1 - Zoheidi, M. A1 - Eberstein, Markus A1 - Krüger, Jörg T1 - Influence of core diameter and coating material on nanosecond laser-induced damage threshold of optical multimode fibers JF - Journal of optoelectronics and advanced materials N2 - Single and multi pulse laser-induced damage thresholds (LIDT) of core, cladding, and coating materials of high-power optical multimode fibers were determined in accordance with ISO 11254 for 532 nm and 1064 nm wavelength in the 10-ns pulse duration regime with spatial Gaussian beam shape. For all-silica fibers, LIDT increases with rising core diameter in a range between 100-600 µm for a constant cladding-core ratio of 1.2. The damage resistance of the low refracting cladding (0.3 % fluorine doped fused silica) is comparable to the undoped SiO2 core. Coating materials show significantly lower LIDT than light-guiding parts of the fibers. KW - Fiber waveguides (42.81.Qb) KW - Physical radiation damage (61.80.-x) KW - Laser-beam impact phenomena (79.20.Ds) KW - Glasses (81.05.Kf) PY - 2010 SN - 1454-4164 VL - 12 IS - 3 SP - 711 EP - 714 PB - INOE & INFM CY - Bucharest AN - OPUS4-21083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -