TY - JOUR A1 - Emmerling, Franziska A1 - Haferkamp, Sebastian A1 - Kraus, Werner T1 - Studies on the mechanochemical Knoevenagel condensation of fluorinated benzaldehyde derivates JF - Journal of Materials Science N2 - The mechanochemical Knoevenagel condensation of three fluorinated benzaldehyde derivates and malononitrile was investigated. The reactions were performed under solvent- and catalyst-free conditions and resulted in highly crystalline products after crystallization from a viscous phase in the milling jar. The quality of the obtained crystals was sufficient for single-crystal X-ray diffraction circumventing a recrystallization step. To gain more information on the reaction, progress was investigated in situ using time-resolved Raman spectroscopy. The results show a direct conversion of the reactants. KW - C-C coupling KW - Knoevenagel condensation KW - In situ KW - Mechanochemistry PY - 2018 DO - https://doi.org/10.1007/s10853-018-2492-0 SN - 0022-2461 VL - 53 IS - 19 SP - 13713 EP - 13718 PB - Springer Link AN - OPUS4-45682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Haferkamp, Sebastian A1 - Fischer, Franziska A1 - Kraus, Werner A1 - Emmerling, Franziska T1 - Mechanochemical Knoevenagel condensation investigated in situ JF - Beilstein Journal of organic chemistry N2 - The mechanochemical Knoevenagel condensation of malononitrile with p-nitrobenzaldehyde was studied in situ using a tandem approach. X-ray diffraction and Raman spectroscopy were combined to yield time-resolved information on the milling process. Under solvent-free conditions, the reaction leads to a quantitative conversion to p-nitrobenzylidenemalononitrile within 50 minutes. The in situ data indicate that the process is fast and proceeds under a direct conversion. After stopping the milling process, the reaction continues until complete conversion. The continuous and the stopped milling process both result in crystalline products suitable for single crystal X-ray diffraction. KW - Mechanochemistry KW - Ball milling KW - C–C coupling KW - In situ KW - Knoevenagel condensation PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-425388 DO - https://doi.org/10.3762/bjoc.13.197 VL - 13 SP - 2010 EP - 2014 PB - Beilstein-Institut AN - OPUS4-42538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -