TY - JOUR A1 - Kornev, R. A. A1 - Sennikov, P. G. A1 - Gornushkin, Igor B. A1 - Ermakov, A. A. A1 - Shkrunin, V. E. A1 - Polykov, V. S. A1 - Kornev, A. R. A1 - Kornev, K. D. T1 - Laser induced dielectric breakdown as a novel method for the synthesis of molybdenum boride N2 - Laser induced dielectric breakdown (LIDB) on a surface of solid Mo in H2/BF3 atmosphere at 30-760 Torr and in a gaseous mixture MoF6/H2/BF3 + at 760 Torr pressure is tested for synthesis and deposition of superhard molybdenum borides that are needed in many areas of industry and technology. The emission spectra of the plasma and the dynamics of the gas discharge near the substrate are investigated. A comparative analysis of the gas mixture before and after exposure to LIDB plasma is carried out using IR spectroscopy. The conditions for the formation of molybdenum borides are determined. A thermodynamic analysis of the MoF6/H2/BF3 and Mo/H2/BF3 systems is carried out to determine the temperature range for the formation of molybdenum borides and establish the main chemical reactions responsible for their formation. Deposits containing MoB and MoB2 phases are obtained. For the mixture MoF6/H2/BF3, the deposit exhibits an amorphous layered structure, which contains 19.15 wt% F, 30.45% O, and 0.8% Si. For the Mo/H2/BF3 system at the pressures 30 and 160 Torr, nanopowder of molybdenum boride is produced with a characteristic grain size of 100 nm. At pressures above 160 Torr, Mo nanopowder with a grain size <30 nm is obtained. KW - LIDB plasma KW - MoF6 KW - BF3 KW - Hydrogen reduction KW - Molybdenum boride PY - 2022 DO - https://doi.org/10.1007/s11090-021-10224-0 SN - 1572-8986 SP - 1 EP - 18 PB - Springer CY - Dordrecht AN - OPUS4-54290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kornev, Roman A1 - Gornushkin, Igor B. A1 - Shabarova, Lubov A1 - Kadomtseva, Alena A1 - Mochalov, Georgy A1 - Rekunov, Nikita A1 - Romanov, Sergey A1 - Medov, Vitaly A1 - Belousova, Darya A1 - Maleev, Nikita T1 - Plasma-Chemical Disposal of Silicon and Germanium Tetrachlorides Waste by Hydrogen Reduction N2 - The processes of hydrogen reduction of silicon and germanium chlorides under the conditions of high-frequency (40.68 MHz) counteracted arc discharge stabilized between two rod electrodes are investigated. The main gas-phase and solid products of plasma-chemical transformations are determined. Thermodynamic analysis of SiCl4 + H2 and GeCl4 + H2 systems for optimal process parameters was carried out. Using the example of hydrogen reduction of SiCl4 by the method of numerical modeling, gas-dynamic and thermal processes for this type of discharge are investigated. The impurity composition of gas-phase and solid reaction products is investigated. The possibility of single-stage production of high-purity Si and Ge mainly in the form of compact ingots, as well as high-purity chlorosilanes and trichlorogermane, is shown. KW - High-frequency arc discharge KW - Hydrogen reduction KW - Silicon chlorides KW - Germanium chlorides PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594454 DO - https://doi.org/10.3390/sci6010001 VL - 6 IS - 1 SP - 1 EP - 12 PB - MDPI AG AN - OPUS4-59445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sennikov, P. A1 - Ermakov, A. A1 - Kornev, R. A1 - Gornushkin, Igor B. T1 - Laser induced dielectric breakdown in reactive mixture SiF4 + H2 N2 - Important chemical process of reduction of SiF4 by hydrogen is realized in laser induced dielectric breakdown (LIDB) plasma in a gas mixture of SiF4 and H2. The process may be an alternative to a method of Plasma enhanced chemical vapor deposition (PECVD) which is commonly used for production of pure and isotopically pure silicon films. The composition of laser induced plasma in gases SiF4, SiF4 + H2, SiF4 + H2 + Ar at atmospheric pressure is studied and compared to the composition of inductively coupled plasma (ICP) in the same gases but at reduced pressure of 3 Torr. The gaseous products of chemical reactions are inferred from optical emission spectroscopy (OES) and IR spectroscopy. The reaction products of silicon fluoride SiF and fluorosilanes SiHxFy (x, y = 1, 2, 3) in LIDB plasma are observed and confirmed by equilibrium chemistry calculations and simulations of plasma expansion dynamics using a fluid dynamic-chemical plasma model. It is further suggested that chemisorption of fluorinated species like SiFx (x = 1, 2) followed by the surface reaction with H-atoms lead to a formation of silicon-to‑silicon bonds on a substrate surface. A conclusion is drawn that energetic laser induced plasma can prove efficient for one-step PECVD by hydrogen reduction of SiF4. KW - Silicon halides KW - Chemical vapor deposition KW - Laser induced dielectric breakdown KW - Hydrogen reduction PY - 2021 DO - https://doi.org/10.1016/j.sab.2021.106099 VL - 179 SP - 106099 PB - Elsevier B.V. AN - OPUS4-53583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -