TY - JOUR A1 - Brauser, Stephan A1 - Rethmeier, Michael A1 - Pepke, Lutz-Alexander A1 - Weber, Gert T1 - Influence of production-related gaps on strength properties and deformation behaviour of spot welded trip steel HCT690T JF - Welding in the world N2 - In this study, the influence of production-related gaps on the shear tension strength and fatigue performance was investigated for resistance spot welded TRIP steel HCT690. Furthermore, the local strain distribution in shear tension test was calculated by the digital image correlation technique (DIC). The static shear tension strength was found to be almost independent of gaps up to 3 mm. The maximum local strain in the spot weld region however decreases depending on which sample side (deformed or undeformed) is considered. In addition, it has been ascertained that gaps of 3 mm lead to a significant drop in fatigue life compared to gap-free shear tension samples. This fact could be attributed to decreased stiffness, higher transverse vibration and higher rotation (θ) between the sheets as well as increased local stress calculated by 2 dimensional FE simulation. KW - Deformation KW - Fatigue life KW - Finite element analysis KW - Gap KW - Resistance spot welding KW - Shear strength PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 03-04 SP - 115 EP - 125 PB - Springer CY - Oxford AN - OPUS4-27590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ebert-Spiegel, M. A1 - Goecke, S.-F. A1 - Rethmeier, Michael T1 - Possibilities for compensating a higher heat input, in particular by the torch offset relative to the top sheet at the fillet weld on a lap joint JF - Welding in the world N2 - This paper deals with the use of an adaptive control system for compensating the variation in the gap height of a fillet welded lap joint. Gap bridging requires the input of additional filler material and is related to an increased energy input. Hence, the aim was a compensation of the effect of an increased heat input, in order to maintain the weld pool and excessive penetration, which can prevent consequently root reinforcement and burn-through. The findings achieved in this work show possibilities for a real-time controlled adjustments of the welding parameters in automated metal active gas (MAG) welding for compensating a higher heat input, in particular by means of the torch offset relative to the top sheet at the fillet weld on a lap joint. KW - MAG welding KW - Adaptive control KW - High strength steels KW - Gap KW - Energy input KW - Mathematical models PY - 2015 DO - https://doi.org/10.1007/s40194-015-0220-9 SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 3 SP - 443 EP - 453 PB - Springer CY - Oxford AN - OPUS4-33079 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, A. A1 - Goecke, S.F. A1 - Rethmeier, Michael T1 - Laser beam oscillation for fillet welding JF - Welding in the world N2 - In today’s automotive frame-and-body construction, laser welds are typically carried out as square butt welds in lap joints. These welds are increasingly produced by remote laser welding optics with working distances of 500 mm and more. This enables simple path programming because clamping devices are traversed over and therefore low cycle times with improved productivity is achieved. However, workpiece tolerances lead to part displacements and varying joint positions over time. These displacements have to be acted against by appropriate flange length that contain for positioning deviations. Using this concept, aspired light-weight optimisations, e.g. reducing flange length, are difficult to achieve. By using seam tracking sensors, part tolerances are automatically detected and counteracted for. In addition, joint edge detection allows constructive changes on the type of weld. Fillet welds reduce flange lengths', improve force flow and open up possibilities for visual quality monitoring. Apart from that, vertical displacements in the form of height tolerances still occur. This needs consideration by adapting the set of welding parameter to the current welding situation. In this respect, one main welding parameter is the lateral beam offset to the upper sheet. Since body-in-white welding applications mainly comprise of zinc-coated steel sheets, special requirements for the welding process are given. Especially zero-gap-welding and welding of joints with gaps larger than 0.2 mm are critical. Using a laser beam oscillation process can stabilise these situations. Approaches to finding parameter sets are presented in this paper. KW - Laser beams KW - Welding KW - Fillet welds KW - Gap KW - Process procedures KW - Monitoring systems PY - 2014 DO - https://doi.org/10.1007/s40194-014-0165-4 SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 6 SP - 865 EP - 872 PB - Springer CY - Oxford AN - OPUS4-32075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -