TY - JOUR A1 - Ritter, Martin A1 - Dziomba, T. A1 - Kranzmann, Axel A1 - Koenders, L. T1 - A landmark-based 3D calibration strategy for SPM JF - Measurement science and technology N2 - We present a new method for the complete three-dimensional (3D) calibration of scanning probe microscopes (SPM) and other high-resolution microscopes, e.g., scanning electron microscopes (SEM) and confocal laser scanning microscopes (CLSM), by applying a 3D micrometre-sized reference structure with the shape of a cascade slope-step pyramid. The 3D reference structure was produced by focused ion beam induced metal deposition. In contrast to pitch featured calibration procedures that require separate lateral and vertical reference standards such as gratings and step height structures, the new method includes the use of landmarks, which are well established in calibration and measurement tasks on a larger scale. However, the landmarks applied to the new 3D reference structures are of sub-micrometre size, the so-called 'nanomarkers'. The nanomarker coordinates are used for a geometrical calibration of the scanning process of SPM as well as of other instrument types such as SEM and CLSM. For that purpose, a parameter estimation routine involving three scale factors and three coupling factors has been developed that allows lateral and vertical calibration in only one sampling step. With this new calibration strategy, we are able to detect deviations of SPM lateral scaling errors as well as coupling effects causing, e.g., a lateral coordinate shift depending on the measured height position of the probe. KW - Scanning probe microscopy KW - Focused ion beam KW - Calibration KW - 3D standards KW - Parameter estimation KW - Spatial coupling KW - Distortions KW - SPM KW - Landmarks KW - Nanomarker KW - Coupling KW - 3D calibration PY - 2007 DO - https://doi.org/10.1088/0957-0233/18/2/S12 SN - 0957-0233 SN - 1361-6501 VL - 18 SP - 404 EP - 414 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-16358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Österle, Werner A1 - Häusler, Ines A1 - Stewart, M. T1 - Ga+ implantation in a PZT film during focused ion beam micro-machining JF - Physica status solidi C N2 - The objective of the present work was to study the impact of Focused Ion Beam (FIB) machining parameters on the thickness of the damaged layer within a thin film PZT. Therefore, different Ga+- ion doses and ion energies were applied to a standard PZT film (80/20 lead zirconium titanate) under two beam incidence angles (90° and 1°). The thicknesses of the corresponding Ga+-implanted layers were then determined by cross-sectional TEM in combination with energy dispersive spectroscopic (EDS) line-scans and correlated with polarisation hysteresis loops. The results show a decrease of Ga+-implanted layer thickness with decreasing inclination angle, whereas ion energy and ion dose could be correlated with gallium concentration in the implanted layers.. Under the most unfavorable conditions the depth of the affected zone was 26 nm, it was only 2 nm for the most favorable conditions. KW - PZT KW - Focused ion beam KW - Gallium implantation KW - Polarisation-electric field loop PY - 2015 DO - https://doi.org/10.1002/pssc.201400096 SN - 1610-1634 SN - 1862-6351 SN - 1610-1642 VL - 12 IS - 3 SP - 314 EP - 317 PB - Wiley-VCH CY - Berlin AN - OPUS4-32872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -