TY - JOUR A1 - Markwart, Jens C. A1 - Battig, Alexander A1 - Zimmermann, Lisa A1 - Wagner, Martin A1 - Fischer, Jochen A1 - Schartel, Bernhard A1 - Wurm, Frederik R. T1 - Systematically controlled decomposition mechanism in phosphorus flame retardants by precise molecular architecture: P−O vs P−N JF - ACS Applied Polymer Materials N2 - Flame retardants (FR) are inevitable additives to many plastics. Halogenated organics are effective FRs but are controversially discussed due to the release of toxic gases during a fire or their persistence if landfilled. Phosphorus-containing compounds are effective alternatives to halogenated FRs and have potential lower toxicity and degradability. In addition, nitrogencontaining additives were reported to induce synergistic effects with phosphorus-based FRs. However, no systematic study of the gradual variation on a single phosphorus FR containing both P−O and P−N moieties and their comparison to the respective blends of phosphates and phosphoramides was reported. This study developed general design principles for P−O- and P−N-based FRs and will help to design effective FRs for various polymers. We synthesized a library of phosphorus FRs that only differ in their P-binding pattern from each other and studied their decomposition mechanism in epoxy resins. Systematic control over the decomposition pathways of phosphate (PO(OR)3), phosphoramidate (PO(OR)2(NHR)), phosphorodiamidate (PO(OR)(NHR)2), phosphoramide (PO(NHR)3), and their blends was identified, for example, by reducing cis-elimination and the formation of P−N-rich char with increasing nitrogen content in the P-binding sphere. Our FR epoxy resins can compete with commercial FRs in most cases, but we proved that the blending of esters and amides outperformed the single molecule amidates/diamidates due to distinctively different decomposition mechanisms acting synergistically when blended. KW - Phosphorus KW - Flame retardants KW - Epoxies KW - Mechanistic study KW - Toxicity PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-481549 DO - https://doi.org/10.1021/acsapm.9b00129 SN - 2637-6105 VL - 1 IS - 5 SP - 1118 EP - 1128 PB - ACS AN - OPUS4-48154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, M. S. S. A1 - Schartel, Bernhard A1 - Magalhães, F. D. A1 - Pereira, C. M. C. T1 - The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites JF - Fire and Materials N2 - The effectiveness of distinct fillers, from micro to nano-size scaled, on the fire behaviour of an epoxy resin and its carbon fibre reinforced composites was assessed by cone calorimetry. The performance was compared not only regarding the reaction to fire performance, but also in terms of thermal stability, glass transition temperature and microstructure. Regarding the fire reaction behaviour of nanofilled epoxy resin, anionic nanoclays and thermally oxidized carbon nanotubes showed the best results, in agreement with more compact chars formed on the surface of the burning polymer. For carbon fibre reinforced composite plates, the cone calorimeter results of modified resin samples did not show significant improvements on the heat release rate curves. Poorly dispersed fillers in the resin additionally caused reductions on the glass transition temperature of the composite materials. KW - Epoxy resin KW - Carbon fibre reinforced composite KW - Nanoclays KW - Carbon nanotubes KW - Flame retardants PY - 2017 DO - https://doi.org/10.1002/fam.2370 SN - 1099-1018 SN - 0308-0501 VL - 41 IS - 2 SP - 111 EP - 130 PB - Wiley & Sons, Ltd. AN - OPUS4-39085 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone A1 - Farouk, M. A1 - Moustapha, M.E. T1 - Plasma deposition of adhesion-promoting polymer layers onto polypropylene for subsequent covering with thick fire retardant coatings JF - Journal of adhesion science and technology N2 - Melamine resins were used as 50-µm-thick fire retardant coatings for polypropylene (PP). Preceding deposition, low-pressure plasma polymer films of allyl alcohol were coated onto PP to improve the adhesion between PP and melamine resin coatings. The efficiency of such fire retardant coatings was confirmed by flame tests. The plasma-deposited polymer and the dip-coated melamine resin films were characterized by Fourier transform infrared-attenuated total reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The adhesion of coatings was measured using a 90° peel test with a doubled-faced adhesive tape. To detect the locus of failure, the peeled layer surfaces were inspected using optical microscopy and XPS. Thermal properties of PP thick melamine resin-coated films were analyzed by thermogravimetric analysis. KW - Polymer KW - Plasma KW - Polypropylene KW - Fire retardant KW - Melamine precursors KW - Plasma polymerization KW - Allyl alcohol KW - Flame retardants KW - Curing PY - 2015 DO - https://doi.org/10.1080/01694243.2015.1033878 SN - 0169-4243 SN - 1568-5616 VL - 29 IS - 14 SP - 1522 EP - 1533 PB - VNU Science Press CY - Utrecht AN - OPUS4-33112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naumann, Annette A1 - Seefeldt, Henrik A1 - Stephan, Ina A1 - Braun, Ulrike A1 - Noll, Matthias T1 - Material resistance of flame retarded wood-plastic composites against fire and fungal decay JF - Polymer degradation and stability N2 - Flame retarded wood-plastic composites (WPCs) should allow safe application in areas of fire risk. Halogen-free flame retardants can contain high amounts of nitrogen, phosphorus or sulphur, which may serve as nutrition source for wood degrading fungi and accelerate wood decay. Therefore, the material resistance of WPCs with each of four flame retardants against both fire or fungal decay was examined in comparison to WPC without flame retardant. Expandable graphite showed the best performance against fire in cone calorimetry and radiant panel testing. Two ammonium polyphosphates and a third nitrogen-containing flame retardant were not as effective. Contrary to the possibility that flame retardants might enhance fungal decay of WPC, the opposite effect occurred in case of the wood-degrading fungi Trametes versicolor and Coniophora puteana according to determination of mass loss and decrease of bending modulus of elasticity. Only the surface mould Alternaria alternata slightly increased the degradation of WPCs with nitrogen-containing flame retardants compared to WPC without flame retardant according to mass loss data and FTIR-ATR analyses. Finally, WPC including expandable graphite as flame retardant was effective against both fire and fungal decay. KW - Wood-plastic composite (WPC) KW - Flame retardants KW - Fire behaviour KW - Fungal decay KW - Fourier transform infrared - attenuated total reflexion (FTIR-ATR) spectroscopy KW - Microscopy PY - 2012 DO - https://doi.org/10.1016/j.polymdegradstab.2012.03.031 SN - 0141-3910 SN - 1873-2321 VL - 97 IS - 7 SP - 1189 EP - 1196 PB - Applied Science Publ. CY - London AN - OPUS4-26058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Novel phosphorus-modified polysulfone as a combined flame retardant and toughness modifier for epoxy resins JF - Polymer N2 - A novel phosphorus-modified polysulfone (P-PSu) was employed as a combined toughness modifier and a source of flame retardancy for a DGEBA/DDS thermosetting system. In comparison to the results of a commercially available polysulfone (PSu), commonly used as a toughness modifier, the chemorheological changes during curing measured by means of temperature-modulated DSC revealed an earlier occurrence of mobility restrictions in the P-PSu-modified epoxy. A higher viscosity and secondary epoxy-modifier reactions induced a sooner vitrification of the reacting mixture; effects that effectively prevented any phase separation and morphology development in the resulting material during cure. Thus, only about a 20% increase in fracture toughness was observed in the epoxy modified with 20 wt.% of P-PSu, cured under standard conditions at 180 °C for 2 h. Blends of the phosphorus-modified and the standard polysulfone (PSu) were also prepared in various mixing ratios and were used to modify the same thermosetting system. Again, no evidence for phase separation of the P-PSu was found in the epoxy modified with the P-PSu/PSu blends cured under the selected experimental conditions. The particular microstructures formed upon curing these novel materials are attributed to a separation of PSu from a miscible P-PSu–epoxy mixture. Nevertheless, the blends of P-PSu/PSu were found to be effective toughness/flame retardancy enhancers owing to the simultaneous microstructure development and polymer interpenetration. KW - Flame retardants KW - Phosphorus-modified polysulfone KW - Fracture toughness PY - 2007 SN - 0032-3861 SN - 1873-2291 VL - 48 IS - 3 SP - 778 EP - 790 PB - Springer CY - Berlin AN - OPUS4-14515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabe, Sebastian A1 - Chuenban, Yuttapong A1 - Schartel, Bernhard T1 - Exploring the Modes of Action of Phosphorus-Based Flame Retardants in Polymeric Systems JF - Materials N2 - Phosphorus-based flame retardants were incorporated into different, easily preparable matrices, such as polymeric thermoset resins and paraffin as a proposed model for polyolefins and investigated for their flame retardancy performance. The favored mode of action of each flame retardant was identified in each respective system and at each respective concentration. Thermogravimetric analysis was used in combination with infrared spectroscopy of the evolved gas to determine the pyrolysis behavior, residue formation and the release of phosphorus species. Forced flaming tests in the cone calorimeter provided insight into burning behavior and macroscopic residue effects. The results were put into relation to the phosphorus content to reveal correlations between phosphorus concentration in the gas phase and flame inhibition performance, as well as phosphorus concentration in the residue and condensed phase activity. Total heat evolved (fire load) and peak heat release rate were calculated based on changes in the effective heat of combustion and residue, and then compared with the measured values to address the modes of action of the flame retardants quantitatively. The quantification of flame inhibition, charring, and the protective layer effect measure the non-linear flame retardancy effects as functions of the phosphorus concentration. Overall, this screening approach using easily preparable polymer systems provides great insight into the effect of phosphorus in different flame retarded polymers, with regard to polymer structure, phosphorus concentration, and phosphorus species. KW - Flame retardants KW - Flame inhibition KW - Cone calorimeter KW - Aluminum diethyl phosphinate KW - Polyester KW - PMMA KW - Epoxy resin KW - Red phosphorus KW - BDP PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-402731 DO - https://doi.org/10.3390/ma10050455 SN - 1996-1944 VL - 10 IS - 5 SP - 455, 1 EP - 455, 23 PB - MDPI AN - OPUS4-40273 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tomiak, F. A1 - Schartel, Bernhard A1 - Wolf, M. A1 - Drummer, D. T1 - Particle Size Related Effects of Multi-Component Flame-Retardant Systems in poly(butadiene terephthalate) JF - Polymers N2 - Aluminum tris (diethylphosphinate) (AlPi) is known to have an efficient flame-retardant effect when used in poly(butadiene terephthalates) (PBT). Additionally, better flame-retardant effects can be achieved through the partial substitution of AlPi by boehmite in multi-component systems, which have been shown to be an effective synergist due to cooling effects and residue formation. Although the potential of beneficial effects is generally well known, the influence of particle sizes and behavior in synergistic compositions are still unknown. Within this paper, it is shown that the synergistic effects in flammability measured by limiting oxygen index (LOI) can vary depending on the particle size distribution used in PBT. In conducting thermogravimetric analysis (TGA) measurements, it was observed that smaller boehmite particles result in slightly increased char yields, most probably due to increased reactivity of the metal oxides formed, and they react slightly earlier than larger boehmite particles. This leads to an earlier release of water into the system enhancing the hydrolysis of PBT. Supported by Fourier transformation infrared spectroscopy (FTIR), we propose that the later reactions of the larger boehmite particles decrease the portion of highly flammable tetrahydrofuran in the gas phase within early burning stages. Therefore, the LOI index increased by 4 vol.% when lager boehmite particles were used for the synergistic mixture. KW - Flame retardants KW - Aluminum diethylphosphinate KW - Boehmite KW - Poly(butadiene terephthalates) (PBT) KW - Mechanical properties PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509286 DO - https://doi.org/10.3390/polym12061315 SN - 2073-4360 VL - 12 IS - 6 SP - 1315 PB - MDPI AN - OPUS4-50928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeleny, R. A1 - Voorspoels, S. A1 - Ricci, M. A1 - Becker, Roland A1 - Jung, Christian A1 - Bremser, Wolfram A1 - Sittidech, M. A1 - Panyawathanakit, N. A1 - Wong, W. F. A1 - Choi, S.M. A1 - Lo, K.C. A1 - Yeung, W. Y. A1 - Kim, D.H. A1 - Han, J. A1 - Ryu, J. A1 - Mingwu, S. A1 - Chao, W. A1 - Schantz, M.M. A1 - Lippa, K.A. A1 - Matsuyama, S. T1 - Evaluation of the state-of-the-art measurement capabilities for selected PBDEs and decaBB in plastic by the international intercomparison CCQM-P114 JF - Analytical and bioanalytical chemistry N2 - An international intercomparison involving eight national metrology institutes (NMIs) was conducted to establish their current measurement capabilities for determining five selected congeners from the brominated flame retardant classes polybrominated diphenyl ethers and polybrominated biphenyls. A candidate reference material consisting of polypropylene fortified with technical mixtures of penta-, octa- and decabromo diphenyl ether and decabromo biphenyl, which was thoroughly assessed for material homogeneity and stability, was used as study material. The analytical procedures applied by the participants differed with regard to sample pre-treatment, extraction, clean-up, employed calibrants and type of calibration procedure as well as regarding analytical methods used for separation, identification and quantification of the flame retardant congeners (gas chromatography coupled to an electron capture detector (GC-ECD), gas chromatography-mass spectrometry in the electron ionisation mode (GC-EI-MS), gas chromatography-mass spectrometry in the electron capture negative ionisation mode (GC-ECNI-MS), and liquid chromatography-inductive coupled plasma-mass spectrometry (LC-ICP-MS)). The laboratory means agreed well with relative standard deviations of the mean of means of 1.9%, 4.8%, 5.5% and 5.4% for brominated diphenyl ether (BDE) 47, 183 and 209 and for the brominated biphenyl (BB) congener 209, respectively. For BDE 206, a relative standard deviation of 28.5% was obtained. For all five congeners, within-laboratory relative standard deviations of six measurements obtained under intermediate precision conditions were between 1% and 10%, and reported expanded measurements uncertainties typically ranged from 4% to 10% (8% to 14% for BDE 206). Furthermore, the results are in good agreement with those obtained in the characterization exercise for determining certified values for the flame retardant congeners in the same material. The results demonstrate the state-of-the-art measurement capabilities of NMIs for quantifying representative BDE congeners and BB 209 in a polymer. The outcome of this intercomparison (pilot study) in conjunction with possible improvements for employing exclusively calibrants with thoroughly assessed purity suggests that a key comparison aiming at underpinning calibration and measurement capability (CMC) claims of NMIs can be conducted. KW - Flame retardants KW - Polymer KW - Polybrominated diphenyl ethers (PBDEs) KW - Polybrominated biphenyls (PBBs) KW - International intercomparison PY - 2010 DO - https://doi.org/10.1007/s00216-009-3314-7 SN - 1618-2642 SN - 1618-2650 VL - 396 IS - 4 SP - 1501 EP - 1511 PB - Springer CY - Berlin AN - OPUS4-22905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -