TY - JOUR A1 - Battig, Alexander A1 - Sanchez-Olivares, G. A1 - Rockel, Daniel A1 - Maldonado-Santoyo, M. A1 - Schartel, Bernhard T1 - Waste not, want not: The use of leather waste in flame retarded EVA JF - Materials and design N2 - Leather is among the most ancient, widely used materials worldwide. Industrial-scale leather production produces large quantities of organic waste attained during shaving and buffing steps during processing. In this study, leather wastes (LW) are used as fillers in flame retarded polymer composites. LW is investigated as a multifunctional bio-filler that enhances the fire performance of flame retarded poly(ethylene–vinyl acetate) (EVA) containing phosphorus flame retardants (P-FRs) ammonium polyphosphate (APP) or a melamine-encapsulated APP (eAPP). Using LW from tanneries as adjuvants to enhance P-FRs in EVA reduces industrial wastes that otherwise require costly waste management solutions. Materials are characterized multi-methodically via mechanical tests, electron microscopy, rheology, thermogravimetric analysis, evolved gas analysis, and condensed phase FTIR, also reaction-to-small-flames and cone calorimeter tests. EVA containing 10 wt-% LW and 20 wt-% P-FRs achieve 20% reductions in fire loads versus EVA, and up to 10% reduction in effective heats of combustion versus EVA with equal (30 wt-%) P-FR loadings. Enhanced char stabilization of EVA composites with LW and P-FRs lowered peaks of heat release rates up to 53% compared to EVA, and up to 40% compared to equal P-FRs loadings. Synergisms between LW and P-FRs in EVA are quantified. A chemical decomposition mechanism is proposed. KW - Leather waste KW - Tannery industry KW - EVA KW - Fire protection KW - Flame retardancy KW - Charring PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532977 DO - https://doi.org/10.1016/j.matdes.2021.110100 SN - 0264-1275 VL - 210 SP - 1 EP - 16 PB - Elsevier CY - Amsterdam AN - OPUS4-53297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häßler, Dustin A1 - Hothan, Sascha T1 - Numerical and experimental analysis of reactive fire protection systems applied to solid steel rods in tension JF - Journal of Structural Fire Engineering N2 - The application of intumescent coatings for fire protection of steel constructions is increasing. Thanks to the relative thin thickness of the coatings, the typical visual appearance of the structures can remain essentially unchanged. In Germany, the applicability of the systems is regulated by the national as well as European technical assessments. According to the approvals, the application on steel members in tension is only allowed with limitations. Especially, the application on solid steel rods in tension is currently excluded from the approval. The paper explains the actual state of the art of the application of reactive fire protection systems applied to steel structures. Physical and technical background information are provided. Furthermore, the latest scientific results of an on-going research project funded by the German National Institute of Building Technology (DIBt) and conducted by the Federal Institute for Materials Research and Testing (BAM) will be described. KW - Steel structure KW - Tension member KW - Fire protection KW - Reactive fire protection system PY - 2015 SN - 2040-2317 VL - 6 IS - 4 SP - 275 EP - 282 PB - Multi-Science Publishing AN - OPUS4-35962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sanchez Olivares, G. A1 - Battig, Alexander A1 - Goller, Sebastian M. A1 - Rockel, Daniel A1 - Ramirez Gonzáles, V. A1 - Schartel, Bernhard T1 - Imparting Fire Retardancy and Smoke Suppression to Leather during Tanning Processes JF - ACS Omega N2 - Leather is considered a luxury good when used in seating and upholstery. To improve safety, flame retardancy in leather is usually achieved through various finishing processes such as spray or roller coating. These treatments require processing steps that cost time and are laborintensive. One avenue to achieving flame retardancy in leather is to add flame retardants during the tanning process. However, the influence on flame retardancy exerted by specific intumescent additives specifically added during leather tanning has yet to be investigated. This work explores the roles played by intumescent additive compounds in flame retarding leather when they are added during tanning instead of applied as a coating. Via a systematic investigation of various compound mixtures, the flame retardant effects in the condensed and the gas phases are elucidated. The results show a strong impact of melamine in the gas phase and of polyphosphates in the condensed phase. Their impact was quantified in fire and smoke analysis, showing a 14% reduction in the peak of heat release rate, strongly reduced burning lengths, and a 20% reduction in total smoke release compared to nontreated leather. These results illuminate the key role played by specific compounds in the flame retardancy of leather, particularly when they are added specifically during the tanning process instead of being applied as a coating. This method has great potential to reduce processing steps, lower costs, and improve material safety. KW - Leather KW - Fire protection KW - Intumescent additives KW - Smoke suppression PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564777 DO - https://doi.org/10.1021/acsomega.2c05633 SN - 2470-1343 VL - 7 IS - 48 SP - 44156 EP - 44169 PB - ACS AN - OPUS4-56477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schartel, Bernhard A1 - Beck, Uwe A1 - Bahr, Horst A1 - Hertwig, Andreas A1 - Knoll, Uta A1 - Weise, Matthias T1 - Sub-micrometre coatings as an infrared mirror: a new route to flame retardancy JF - Fire and materials N2 - Most of the polymeric materials used are easy to ignite and show extensive flame spread along their surfaces. Apart from extensive heat release rates, their short time to ignition (tig), in particular, is a key fire hazard. Preventing ignition eliminates fire hazards completely. Protection layers that shift tig by more than an order of magnitude are powerful flame retardancy approaches presenting an alternative to the usual flame retardancy concepts. Coatings are proposed that consist of a three-layer system to ensure adhesion to the substrate, acting as an infrared (IR) mirror and protecting against oxidation. The IR-mirror layer stack is realised by physical vapour deposition in the sub-micrometre (<1 µm) range, reducing heat absorption by up to an order of magnitude. Not only is the ease of ignition diminished (tig is increased by several minutes), the flame spread and fire growth indices are also remarkably reduced to as little as 1/10 of the values of the uncoated polymers open for further optimization. Sub-micrometre thin IR-mirror coatings yielding surface absorptivity <0.1 are proposed as a novel and innovative flame retardancy approach. KW - Coating KW - Fire protection KW - Physical vapour deposition (PVD) KW - IR mirror KW - Ignition PY - 2012 DO - https://doi.org/10.1002/fam.1122 SN - 0308-0501 SN - 1099-1018 VL - 36 IS - 8 SP - 671 EP - 677 PB - Heyden CY - London AN - OPUS4-27210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Watolla, Marie-Bernadette A1 - Gluth, Gregor A1 - Sturm, Patrick A1 - Rickard, W.D.A. A1 - Krüger, Simone A1 - Schartel, Bernhard T1 - Intumescent geopolymer-bound coatings for fire protection of steel JF - Journal of ceramic science and technology N2 - The passive fire protection of steel structures and other load-bearing components will continue to gain importance in future years. In the present contribution, novel intumescent aluminosilicate (geopolymer-bound) composites are proposed as fire-protective coatings on steel. Steel plates coated with these materials were exposed to the standard temperature-time curve as defined in ISO 834 – 1:1999. The coatings partially foamed during curing and expanded further during thermal exposure, demonstrating their intumescent characteristic.Thermogravimetryandoscillatory rheometry determined that the intumescent behavior is attributed to a transition to a viscous state (loss factor > 1) in the temperature range of major water release, differing from conventional geopolymers. XRD and SEM images showed that the coatings had characteristics of ceramic or glass-ceramic foams after fire resistance testing, suggesting superior performance under challenging conditions. The thickness of the coatings influenced their foaming and intumescent behavior and thus the time for the coated steel plates to reach 500 °C. A number of additives were also studied with the best performance obtained from samples containing sodium tetraborate.Acoating of just 6mmwas able to delay the time it takes for a steel substrate to reach 500 °C to more than 30 minutes. KW - Geopolymers KW - Fire protection KW - Intumescence KW - Coatings KW - Fire resistance PY - 2017 UR - https://www.ceramic-science.com/articles/all-articles.html?article_id=100558 DO - https://doi.org/10.4416/JCST2017-00035 VL - 8 IS - 3 (Topical issue: Geopolymers) SP - 351 EP - 364 PB - Göller Verlag CY - Baden-Baden AN - OPUS4-42139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -