TY - JOUR A1 - Nadejde, C. A1 - Neamtu, M. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Paul, Andrea A1 - Ababei, G. A1 - Panne, Ulrich T1 - Green Fenton-like magnetic nanocatalysts: Synthesis, characterization and catalytic application JF - Applied catalysis / B N2 - Five iron oxalate core–shell magnetite nanoparticles catalysts are evaluated as magnetic heterogeneous materials. Simple and efficient procedures for the preparation of magnetic iron oxalate coated nanoparticles are presented. The catalysts are fully characterized using various investigation techniques. Additionally, the formation of photo-sensitized oxygen by spin-trapping using electron spin resonance is investigated. The catalytic activity of two model substrates (carbamazepine and bisphenol A) is also evaluated. The effect of operational parameters (catalyst and H2O2 concentration, UVA light) on the degradation performance of the oxidation process is investigated. The obtained reaction rates depend on the nature of the compound and increase with iron oxide shell thickness of the catalyst. Moreover, these materials show a significant activity during two consecutive tests. The optimum experimental parameters are found to be 1.0 g L-1 of catalysts, 10 mM H2O2, under UVA irradiation. More than 99% of both substrates are removed after 30 min of reaction time under the experimental conditions given above. The results obtained show that the catalysts are suitable candidates for the removal of pollutants in wastewaters by means of the Fenton heterogeneous reaction. KW - Magnetic core–shell nanocatalysts KW - Characterization KW - Fenton oxidation KW - Micropollutants KW - Water treatment PY - 2015 DO - https://doi.org/10.1016/j.apcatb.2015.04.050 SN - 0926-3373 SN - 1873-3883 VL - 176-177 SP - 667 EP - 677 PB - Elsevier CY - Amsterdam AN - OPUS4-33820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rambu, A. P. A1 - Nadejde, C. A1 - Schneider, Rudolf A1 - Neamtu, M. T1 - Thin films containing oxalate-capped iron oxide nanomaterials deposited on glass substrate for fast Fenton degradation of some micropollutants JF - Environmental Science and Pollution Research N2 - The main goal of the study was to evaluate the catalytic activity of two hybrid nanocatalysts consisting in Fe3O4 nanoparticles modified with either chitosan (CS) or polyethylene glycol (PEG)/ferrous oxalate (FO), and further deposited on solid substrate as thin films. X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) were employed for the structural and morphological characterizations of the heterogeneous catalysts. The Degradation kinetic studies of two reactive azo dye (Reactive Black 5 (RB5) and Reactive Yellow 84 (RY84)) as well as Bisphenol A (BPA) solutions were carried out using Fenton-like oxidation, in the presence of different concentrations of H2O2, at initial near-neutral pH and room temperature. The results indicated that a low amount of catalytic material (0.15 g/L), deposited as thin film, was able to efficiently trigger dye degradation in solution in the presence of 6.5mmol/LH2O2 for RB5 and of only 1.6mmol/LH2O2 in the case of BPA and RY84. In the presence of complex matrices such asWWTP waters, the removal of BPAwas low (only 24% for effluent samples). Our findings recommend the studied immobilized nanocatalysts as promising economical tools for the pretreatment of wastewaters using advanced oxidation processes (AOPs). KW - Thin film KW - Magnetic nanocatalyst KW - Ferrous oxalate KW - Characterization KW - Fenton oxidation KW - Wastewater treatment KW - Abwasser KW - Abbau KW - Bisphenol A PY - 2018 DO - https://doi.org/10.1007/s11356-017-1022-y SN - 0944-1344 SN - 1614-7499 VL - 25 IS - 7 SP - 6802 EP - 6813 PB - Springer CY - Heidelberg AN - OPUS4-44555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -