TY - JOUR A1 - Klippel, A. A1 - Hofmann-Böllinghaus, Anja A1 - Gnutzmann, Tanja A1 - Piechnik, K. T1 - Reaction-to-fire testing of bus interior materials: Assessing burning behaviour and smoke gas toxicity JF - Fire and materials N2 - Although fire safety regulations for buses have been adapted in recent years regarding, for example, fire detection and engine fire suppression systems, the changes in regulations for bus interior materials are minimal. A comparison of fire safety regulations for interior materials in other transport sectors for trains, ships or aircraft reveals a much lower level of requirements for bus materials. Although repeated bus accidents as well as fire statistics show the danger a bus fire can pose to passengers. In particular, the combination of a fire incident and passengers with reduced mobility led to severe disasters in Germany and other European countries. To enhance the fire safety for passengers, the interior bus materials are crucial as the fire development in the bus cabin determines whether escape and rescue is possible. Against this background, bus interior materials were tested in different fire test scenarios. Measurement of a wide variety of parameters, for example, the mass loss, ignition time, smoke gas composition, heat release rate among others were carried out. Tested materials complied to the newest set of requirements. For this purpose, interior materials and their components had to be identified according to their chemical structure. Parts of the tests were funded by BASt (Federal Highway Research Institute) in the project 82.0723/2018. Experimental results show reaction-to-fire behaviour which lead to very limited times for escape and rescue in case of fire in a bus cabin. Based on the studies on fire behaviour and toxicity assessment, recommendations for improved fire safety regulations for interior materials could be made. KW - Burning behaviour KW - Bus interior materials KW - Cone calorimeter KW - DIN tube furnace KW - FTIR spectroscopy KW - Reference values KW - Smoke toxicity PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576085 DO - https://doi.org/10.1002/fam.3108 SN - 1099-1018 VL - 47 IS - 5 SP - 665 EP - 680 PB - Wiley CY - New York, NY AN - OPUS4-57608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Berger, Anka A1 - Krause, Ulrich T1 - Chemical-analytical investigation of fire products in intermediate storages of recycling materials JF - Fire and materials N2 - Organic materials like paper, cardboard, textiles or plastics are mostly flammable. In intermediate storages for recycling products, these materials are stored in large amounts. If fire occurs in these stores, large emissions of smoke and other potentially harmful products are likely. In the present study, the gaseous products released from fires of such materials—for example, because of self-ignition—were investigated. Different fractions (paper/cardboard, textiles and plastics) were crushed at low temperatures (about 80 K) and subsequently allowed to smoulder at different temperatures using the German standard Deutsches Institut für Normung 53436. The gases produced were sampled and analysed using Fourier transform infrared spectroscopy. The chemical composition of these gases differed considerably depending on fuel type. For flammable materials without heteroatom, the gases consisted predominantly of toxic compounds like carbon monoxide and carbon dioxide. Smouldering of materials containing heteroatoms showed, in addition to carbon monoxide, carbon dioxide and water vapour, further toxic components containing the heteroatom. Materials containing chlorine produced hydrogen chloride, and materials containing nitrogen produced ammonia and hydrogen cyanide. KW - Recycling deposits KW - Fire gases KW - FTIR spectroscopy KW - Plastic wastes KW - Paper wastes KW - Textile wastes KW - Smouldering fire PY - 2012 DO - https://doi.org/10.1002/fam.1098 SN - 0308-0501 SN - 1099-1018 VL - 36 IS - 3 SP - 165 EP - 175 PB - Heyden CY - London AN - OPUS4-25791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Simone A1 - Hofmann-Böllinghaus, Anja A1 - Berger, Anka A1 - Gude, Nicolas T1 - Investigation of smoke gases and temperatures during car fire – large-scale and small-scale tests and numerical investigations JF - Fire and Materials N2 - The hazards for passengers during vehicle fires result from the increasing temperature and the emitted smoke gases. A fire was set on a car to investigate the development of temperature and of gaseous fire products in the passenger compartment. The study was based on a full-scale test with a reconstructed scene of a serious car fire. The aim of this work was to identify the conditions for self-rescuing of passengers during a car fire. A dummy, equipped with several thermocouples, was placed on the driver’s seat. Also, the smoke gases were continuously collected through a removable probe sensor corresponding to the nose of the dummy in the passenger compartment and analyzed using Fourier transform infrared spectroscopy. Additionally, several car components were investigated in the smoke density chamber (smoke emission and smoke gas composition). It was found that the toxic gases already reached hazardous levels by 5 min, while the temperatures at the dummy were at that time less than 80 °C. The toxicity of smoke gases was assessed using the fractional effective dose concept. The various experimentally parameters (temperature and smoke gas composition) were implemented into numerical simulations with fire dynamics simulator. Both the experimental data and the numerical simulations are presented and discussed. KW - Smoke gases KW - FTIR spectroscopy KW - Car fire KW - Temperatures KW - FED KW - Numerical simulations PY - 2016 DO - https://doi.org/10.1002/fam.2342 SN - 1099-1018 VL - 40 IS - 6 SP - 785 EP - 799 PB - Wiley CY - Sussex, UK AN - OPUS4-37518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohsin, G. F. A1 - Schmitt, F.-J. A1 - Kanzler, C. A1 - Epping, J. D. A1 - Flemig, Sabine A1 - Hornemann, A. T1 - Structural characterization of melanoidin formed from D-glucose and L-alanine at different temperatures applying FTIR, NMR, EPR, and MALDI-ToF-MS JF - Food Chemistry N2 - The aim of this study was to identify specific chemical bonds and characteristic structures in melanoidins formed from D-glucose and L-alanine between 130 and 200 °C. The results might be used to control the type and amount of melanoidin produced during food processing. For this purpose, complementary techniques, such as FTIR, NMR, EPR, and MALDI-ToF, were employed. At 160 °C color, solubility and UV/Vis absorption change characteristically and consequently, structural transformations could be observed in FTIR and NMR spectra. For example, sharp signals of N-H, C-N, and C-H oscillations in the L-alanine spectrum are prone to inhomogeneous broadening in melanoidins prepared above 150 °C. These changes are caused due to formation of heterogeneous macromolecular structures and occur during condensation reactions that lead to an increasing loss of water from the melanoidins with increasing temperatures. Additionally, MALDI-ToF-MS indicates the polymerization of glyoxal/glyoxylic acid and EPR shows the formation of radical structures. KW - MALDI-ToF-MS KW - Melanoidine KW - Konjugate KW - Lebensmittel KW - MALDI-ToF-MS KW - L-alanine KW - D-glucose KW - Maillard reaction KW - FTIR spectroscopy KW - EPR spectroscopy KW - Melanoidin KW - NMR spectroscopy PY - 2018 DO - https://doi.org/10.1016/j.foodchem.2017.11.115 SN - 0308-8146 VL - 245 SP - 761 EP - 767 PB - Elsevier Science CY - Amsterdam, NL AN - OPUS4-44018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Characterization of the Dead Sea scrolls by advanced analytical techniques JF - Analytical methods N2 - For many years after the discovery of the Dead Sea Scrolls, text analysis and fragment attribution were the main concern of the scholars dealing with them. The uncertain archaeological provenance of a large part of the collection added difficulties to the already formidable task of sorting thousands of fragments. After 60 years of scholarly research the questions of origin, archaeological provenance and correct attribution of the fragments are still debated. To help address these questions we have developed a methodology suitable for the material studies of the scrolls using combinations of X-ray, FTIR and Raman techniques. On the one hand, an accurate characterization of the highly heterogeneous writing media of the Dead Sea Scrolls leads to a reliable reconstruction of their history and, thus, contributes significantly to the current debate. On the other hand, it provides new information on the production of ancient parchment towards the end of the Second Temple period, opening a new page in the historical study of technology. KW - Dead Sea scrolls KW - X-ray analysis KW - FTIR spectroscopy KW - Raman spectroscopy PY - 2013 DO - https://doi.org/10.1039/c3ay41076e SN - 1759-9660 SN - 1759-9679 VL - 5 IS - 18 SP - 4648 EP - 4654 PB - RSC Publ. CY - Cambridge AN - OPUS4-29820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stoch, P. A1 - Szczerba, Wojciech A1 - Bodnar, W. A1 - Ciecinska, M. A1 - Stoch, A. A1 - Burkel, E. T1 - Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations JF - Physical chemistry, chemical physics N2 - Vitrification is the most effective method for the immobilization of hazardous waste by incorporating toxic elements into a glass structure. Iron phosphate glasses are presently being considered as matrices for the storage of radioactive waste, even of those which cannot be vitrified using conventional borosilicate waste glass. In this study, a structural model of 60P2O5–40Fe2O3 glass is proposed. The model is based on the crystal structure of FePO4 which is composed of [FeO4][PO4] tetrahedral rings. The rings are optimized using the DFT method and the obtained theoretical FTIR and Raman spectra are being compared with their experimental counterparts. Moreover, the proposed model is in very good agreement with X-ray absorption fine structure spectroscopy (XANES/EXAFS) and Mössbauer spectroscopy measurements. According to the calculations the Fe3+ is in tetrahedral and five-fold coordination. The maximal predicted load of waste constituents into the glass without rebuilding of the structure is 30 mol%. Below this content, waste constituents balance the charge of [FeO4]- tetrahedra which leads to their strong bonding to the glass resulting in an increase of the chemical durability, transformation and melting temperatures and density. KW - Glass KW - Iron KW - DFT simulations KW - Mössbauer spectroscopy KW - XANES/EXAFS KW - FTIR spectroscopy KW - Raman spectroscopy KW - Coordination PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-317351 DO - https://doi.org/10.1039/c4cp03113j SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 37 SP - 19917 EP - 19927 PB - The Royal Soc. of Chemistry CY - Cambridge AN - OPUS4-31735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weigel, Sandra A1 - Wetekam, J. A1 - Mollenhauer, K. T1 - Identification and classification of PAH in asphalt binders with FTIR spectroscopy and multivariate analysis methods JF - Fuel N2 - Reclaimed asphalt pavements (RAP) with increased contents of polycyclic aromatic hydrocarbons (PAH) are restricted for reuse due to their harmful effects on humans and the environment. This work investigated whether Fourier transform infrared (FTIR) spectroscopy is suitable for a fast and simple identification and quantification of PAH in binders recovered from reclaimed asphalts. For this, the binders from 34 RAP samples were recovered using a rapid procedure developed at the Universität Kassel and were examined with infrared spectroscopy. The obtained spectra were pre-processed (Standard Normal Variate transformation, 1st derivative) and evaluated using a combination of factor analysis and linear discriminant analysis. The results showed that various PAH groups with differently pronounced aromatic structures are present in the binders. However, with FTIR spectroscopy combined with the multivariate methods, a statistical model was developed allowing for the differentiation between the PAH groups and also for the distinction between PAH contents below or above the threshold of 25 mg/kg valid in Germany. KW - Polycyclic aromatic hydrocarbons PAH KW - Reclaimed asphalt KW - Rapid procedure for binder extraction KW - FTIR spectroscopy KW - Multivariate analysis methods PY - 2023 DO - https://doi.org/10.1016/j.fuel.2022.126845 SN - 0016-2361 VL - 337 SP - 1 EP - 7 PB - Elsevier Ltd. AN - OPUS4-56961 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -