TY - JOUR A1 - Christopher, I A1 - Michalchuk, Adam A1 - Pulham, C. A1 - Morrison, C. T1 - Towards Computational Screening for New Energetic Molecules: Calculation of Heat of Formation and Determination of Bond Strengths by Local Mode Analysis JF - Frontiers in Chemistry N2 - The reliable determination of gas-phase and solid-state heats of formation are important considerations in energetic materials research. Herein, the ability of PM7 to calculate the gas-phase heats of formation for CNHO-only and inorganic compounds has been critically evaluated, and for the former, comparisons drawn with isodesmic equations and Atom equivalence methods. Routes to obtain solid-state heats of formation for a range of singlecomponent molecular solids, salts, and co-crystals were also evaluated. Finally, local vibrational mode analysis has been used to calculate bond length/force constant curves for seven different chemical bonds occurring in CHNO-containing molecules, which allow for rapid identification of the weakest bond, opening up great potential to rationalise decomposition pathways. Both metrics are important tools in rationalising the design of new energetic materials through computational screening processes. KW - Energetic materials KW - Density functional theory PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530371 DO - https://doi.org/10.3389/fchem.2021.726357 VL - 9 SP - 726357 AN - OPUS4-53037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kosareva, E. A1 - Gainutdinov, R. A1 - Michalchuk, Adam A1 - Ananyev, I. A1 - Muravyev, N. T1 - Mechanical Stimulation of Energetic Materials at the Nanoscale JF - Physical Chemistry Chemical Physics N2 - The initiation of energetic materials by mechanical stimuli is a critical stage of their functioning, but remains poorly understood. Using atomic force microscopy (AFM) we explore the microscopic initiation behavior of four prototypical energetic materials: 3,4-dinitropyrazole, 𝜖-CL-20, 𝛼-PETN and picric acid. Along with the various chemical structures, these energetic compounds cover a range of application types: a promising melt-cast explosive, the most powerful energetic compound in use, a widespread primary explosive, and a well-established nitroaromatic explosive from the early development of energetics. For the softest materials (picric acid and 3,4-dinitropyrazole), the surfaces were found to behave dynamically, quickly rearranging in response to mechanical deformation. The pit created by nanoscale friction stimulation on the surface of 3,4-dinitropyrazole doubled in volume upon aging for half an hour. Over the same time frame, a similar pit on picric acid surface increased in volume by more than seven-fold. Remarkably, increased humidity was found to reduce the rate of surface rearrangement, potentially offering an origin for the desensitization of energetic materials when wetted. Finally, we identify an inverse correlation between the surface dynamics and mechanical sensitivity of our test energetic compounds. This strongly suggests that surface dynamics influence a material’s ability to dissipate excess energy, acting as a buffer towards mechanical initiation. KW - Energetic materials KW - Mechanical Properties KW - Mechanical Sensitivity PY - 2022 DO - https://doi.org/10.1039/D2CP00832G VL - 24 IS - 15 SP - 8890 EP - 8900 PB - Royal Society of Chemistry AN - OPUS4-54562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - McMonagle, C. J. A1 - Michalchuk, Adam A1 - Chernyshov, D. T1 - FOX-7 high-energy-density material: Thermal expansion and phase transitions revisited JF - Acta crystallographica B N2 - Variable-temperature single-crystal diffraction experiments treated with the Gandolfi method reveal the detailed temperature evolution of the unit-cell dimensions, structural transformations and the phase co-existence of the energetic material FOX-7. Two first-order phase transitions are observed accompanied by abrupt changes in volume and unit-cell dimensions. The thermal expansion is found to be linear for all three phases, albeit highly anisotropic. Moreover, the experimental thermal expansion coefficients differ from those predicted from literature atomistic simulations. KW - Energetic materials KW - Thermal expansion KW - Gandolfi method KW - Phase transition KW - Variable temperature PY - 2022 DO - https://doi.org/10.1107/S2052520621013299 SN - 2052-5206 VL - 78 IS - 1 SP - 91 EP - 95 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-54286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam T1 - The Mechanochemical Excitation of Crystalline LiN3 JF - Faraday Discussions N2 - Mechanochemical reactions are driven by the direct absorption of mechanical energy by a solid (often crystalline) material. Understanding how this energy is absorbed and ultimately causes a chemical transformation is essential for understanding the elementary stages of mechanochemical transformations. Using as a model system the energetic material LiN3 we here consider how vibrational energy flows through the crystal structure. By considering the compression response of the crystalline material we identify the partitioning of energy into an initial vibrational excitation. Subsequent energy flow is based on concepts of phonon–phonon scattering, which we calculate within a quasi-equilibrium model facilitated by phonon scattering data obtained from Density Functional Theory (DFT). Using this model we demonstrate how the moments (picoseconds) immediately following mechanical impact lead to significant thermal excitation of crystalline LiN3, sufficient to drive marked changes in its electronic structure and hence chemical reactivity. This work paves the way towards an ab initio approach to studying elementary processes in mechanochemical reactions involving crystalline solids. KW - Energetic materials KW - Ab initio simulation KW - DFT KW - Mechanochemistry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559310 DO - https://doi.org/10.1039/d2fd00112h SP - 1 EP - 20 PB - Royal Society of Chemistry AN - OPUS4-55931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Hemingway, J. A1 - Morrison, C. T1 - Predicting the Impact Sensitivities of Energetic Materials through Zone-Center Phonon Up-Pumping JF - Journal of Chemical Physics N2 - The development of new energetic materials (EMs) is accompanied by significant hazards, prompting interest in their computational design. Before reliable in silico design strategies can be realized, however, approaches to understand and predict EM response to mechanical impact must be developed. We present here a fully ab initio model based in phonon up-pumping which successfully ranks the relative impact sensitivity of a series of organic EMs. The methodology depends only on the crystallographic unit cell and Brillouin zone center vibrational frequencies. We therefore expect this approach to become an integral tool in the large-scale screening of potential EMs. KW - Energetic materials KW - Ab initio simulation PY - 2021 DO - https://doi.org/10.1063/5.0036927 VL - 154 IS - 6 SP - 064105 AN - OPUS4-52146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Morrison, C. T1 - From lattice vibrations to molecular dissociation JF - Theoretical and Computational Chemistry N2 - The ease with which an energetic material can be initiated by mechanical impact is a critical parameter directing material safety and application. While impact sensitivity metrics are traditionally derived experimentally, recent developments have highlighted that the phenomenon is amenable to first principles simulation. In this chapter, we will outline a fully ab initio approach to predict the relative impact sensitivities of energetic materials based on the mechanochemical principles that link the impact event to vibrational energy transfer. This mechanism is key to rationalizing how a mechanical impact—which deposits energy into the low-frequency lattice vibrations—results in a molecular response. By simulating the vibrational energy levels (the so-called phonon density of states, PDOS) using first-principles computational methods (typically dispersion-corrected plane-wave density functional theory, PW-DFT) we can calculate the relative rate of energy propagation from the delocalized low-energy lattice vibrations through to the localized molecular modes. The latter traps the energy, which eventually results in bond rupture through heightened vibrational excitation. This method, based on vibrational up-pumping, offers a route toward predicting the impact sensitivities of a broad range of energetic materials, provided the crystal structure of the compound (or salt or co-crystal) is known. While it does not offer insight into the sensitizing roles undoubtedly played by crystal defects or grain boundaries, it does provide a level of understanding at the molecular and crystal packing levels. Correspondingly, this approach offers a feedback mechanism to chemists and materials scientists to guide the design of new materials with desired impact sensitivity behavior. KW - Energetic materials KW - Density functional theory KW - Material design PY - 2022 DO - https://doi.org/10.1016/B978-0-12-822971-2.00010-3 VL - 22 SP - 215 EP - 232 PB - Elsevier B.V. AN - OPUS4-54717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalchuk, Adam A1 - Rudic, S. A1 - Pulham, C. A1 - Morrison, C. T1 - Predicting the impact sensitivity of a polymorphic high explosive: the curious case of FOX-7 JF - Chemical Communications N2 - The impact sensitivity (IS) of FOX-7 polymorphs is predicted by phonon up-pumping to decrease as layers of FOX-7 molecules flatten. Experimental validation proved anomalous owing to a phase transition during testing, raising questions regarding Impact sensitivity measurement and highlighting the need for models to predict IS of polymorphic energetic materials. KW - Energetic materials KW - Density functional theory KW - Inelastic Neutron Scattering Spectroscopy KW - Impact Sensitivity PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535558 DO - https://doi.org/10.1039/d1cc03906g SN - 1364-548X VL - 57 IS - 85 SP - 11213 EP - 11216 PB - Royal Society of Chemistry AN - OPUS4-53555 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Portius, P. A1 - Filippou, A.C. A1 - Schnakenburg, G. A1 - Davis, M. A1 - Wehrstedt, Klaus-Dieter T1 - Taming the silicon tetraazide beast JF - Synfacts N2 - Highly energetic silicon tetraazide 1 is synthesized safely in high yield and high purity. The compound is prepared as a solution in benzene which allows it to be handled safely. Stable Lewis base adducts of Si(N3)4 (e.g. 2) are also prepared by treatment of either Si(N3)4 or the di­sodium salt of hexaazidosilicate (3) with Lewis bases (2,2-bipyridine or 1,10-phenanthroline). Unlike Si(N3)4 the Lewis base adduct 2 is thermally stable and does not decompose below 265 °C. The decomposition is very energetic (ΔHd = -2.4 kJg-1) which means 2 and related Lewis base ­adducts could replace environmentally harmful Pb(N3)4 used as primary explosive. KW - Highly energetic silicon tetraazide KW - Lewis base adducts KW - Azides KW - Silicon KW - Energetic materials PY - 2011 DO - https://doi.org/10.1055/s-0030-1259150 SN - 1861-1958 VL - 1 SP - 0043 EP - 0043 PB - Thieme CY - Stuttgart AN - OPUS4-32352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wehrstedt, Klaus-Dieter A1 - Adams, W. D. A1 - Mak, W. A1 - Malow, Marcus A1 - Kumasaki, M. T1 - Report about the IGUS EOS meeting 2010 in Tokyo JF - Journal of Japan society for safety engineering KW - IGUS KW - EOS KW - Organic peroxides KW - Self-reactive substances KW - Energetic materials KW - Test methods KW - Oxidizers KW - Ammonium nitrate KW - Fertilizers PY - 2010 SN - 0570-4480 N1 - Sprachen: Japanisch/Englisch - Languages: Japanese/English VL - 49 IS - 4 SP - 240 EP - 243 CY - Tokyo, Japan AN - OPUS4-21942 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -