TY - JOUR A1 - Biegler, M. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Assessing the predictive capability of numerical additive manufacturing simulations via in-situ distortion measurements on a LMD component during build-up N2 - Due to rapid, localized heating and cooling, distortions accumulate in additive manufactured laser metal deposition (LMD) components, leading to a loss of dimensional accuracy or even cracking. Numerical welding simulations allow the prediction of these deviations and their optimization before conducting experiments. To assess the viability of the simulation tool for the use in a predictive manner, comprehensive systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to Cluster these products in new assembly oriented product families for the optimization. KW - Laser metal deposition KW - Directed Energy Deposition KW - DED KW - Welding Simulation KW - Digital Image Correlation KW - Cimensional Accuracy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502567 DO - https://doi.org/10.1016/j.procir.2018.08.069 VL - 74 SP - 158 EP - 162 PB - Elsevier AN - OPUS4-50256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Kadoke, Daniel A1 - Kruse, Julius T1 - Effect of Ti microalloying on the local strain behavior of cross-weld tensile samples determined by digital image correlation N2 - High-strength low-alloyed (HSLA) steels with yield strength / proof stress ≥ 600 MPa are the basis of modern light-weight steel constructions. Indeed, the economic and ecological benefits strongly depend on their processability in terms of welding. In this context, the use of highly productive welding processes and suitable welding consumables is of vital interest and requires a fundamental understanding of the microstructural changes in the HSLA steel and especially the heat-affected zone (HAZ) of the welded joint. Microalloying elements, such as Ti or Nb, are essential to achieve the desired mechanical properties. To analyse the weldability, three-layer welds were performed using gas metal arc welding (GMAW) and critical microstructures, such as areas of the HAZ that exhibit significant softening or hardening, were identified. The effect of the softened HAZ region on failure was evaluated using cross-weld tensile specimens. Digital image correlation (DIC) was used for in-situ monitoring of the development and accumulation of the local strains in different HAZ regions during tensile testing. Using a specially designed mirror system, the local strains of the microstructure zones on the top and bottom of the weld were recorded simultaneously. In addition, the analysis of the local deformation helps to understand the effects of the softened HAZ on the global strain, the reduction in area, the fracture position, and the overall fracture behavior. KW - High-strength structural steel KW - Microalloying influences KW - HAZ-softening KW - Digital Image Correlation KW - Constraint effect KW - Thermodynamic simulation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-643558 DO - https://doi.org/10.1007/s40194-025-02185-1 SP - 1 EP - 17 PB - Springer Nature AN - OPUS4-64355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -