TY - JOUR A1 - Gluth, Gregor A1 - Zhang, W. A1 - Gaggl, M. A1 - Hillemeier, B. A1 - Behrendt, F. T1 - Multicomponent gas diffusion in hardened cement paste at temperatures up to 350 °C N2 - Diffusional gas transport of a H2/CO2 mixture versus N2 in the pore system of hardened cement pastes was studied at four temperatures up to 350 °C in a Wicke-Kallenbach cell. The pastes possessed separation factors αH2,CO2 from 1.42 to 3.43, i.e. the diffusion of hydrogen took place considerably faster than the diffusion of carbon dioxide. The separation factors depended on the threshold radii of the pastes, smaller threshold radii leading to higher separation factors. The Knudsen numbers of the controlling constrictions of the pore system and the temperature dependence of the effective diffusion coefficients of the gases show that gas transport in these constrictions takes place in the transient regime between Knudsen diffusion and bulk diffusion, smaller constriction widths leading to predominating Knudsen diffusion. It is therefore possible to use cement paste membranes to separate gas components of low molecular weight from higher weight components. KW - Microstructure (B) KW - Mercury porosimetry (B) KW - Diffusion (C) KW - Cement paste (D) KW - Gas separation KW - Pore structure PY - 2012 DO - https://doi.org/10.1016/j.cemconres.2012.02.001 SN - 0008-8846 SN - 1873-3948 VL - 42 IS - 5 SP - 656 EP - 664 PB - Pergamon Press CY - New York, NY AN - OPUS4-25655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -