TY - JOUR A1 - Bartholmai, Matthias A1 - Werner, Klaus-Dieter A1 - Kammermeier, Michael A1 - Köppe, Enrico T1 - Erprobung eines Messsystems mit Datenbus und dezentraler Datenspeicherung für den Einsatz bei Fallprüfungen JF - Technisches Messen N2 - Zur Untersuchung der Sicherheit von Behältern für den Transport und die Lagerung von Gefahrstoffen und -gütern werden Fallprüfungen durchgeführt. Die Aufpralldynamik und die strukturmechanischen Einwirkungen auf den Behälter werden mittels Beschleunigungsaufnehmern und Dehnungsmessstreifen erfasst. Dabei kommen derzeit Vielkanalmesssysteme zum Einsatz, die eine Verkabelung jeder einzelnen Messstelle und somit das Mitfallen eines Kabelbaums erfordern, wodurch Probleme bei der Versuchsvorbereitung und Durchführung entstehen. Die Verwendung eines Messsystems mit Datenbus und dezentraler Datenspeicherung bietet diesbezüglich einen vielversprechenden Lösungsansatz. KW - Vielkanalmesssystem KW - Datenbus KW - Gefahrstoffe KW - Behälter KW - Fallprüfung KW - Hopkinsonstab KW - Multichannel measuring system KW - Data bus KW - Dangerous goods KW - Container KW - Drop test KW - Hopkinson bar PY - 2009 DO - https://doi.org/10.1524/teme.2009.0945 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 76 IS - 10 SP - 447 EP - 454 PB - Oldenbourg CY - München AN - OPUS4-20284 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bethke, John A1 - Goedecke, Thomas A1 - Jahnke, Wolfgang T1 - Permeation through plastic dangerous goods packaging during transport in freight containers - Detection of potentially explosive mixtures in containers under normal conditions of carriage JF - Packaging technology & science N2 - The key point within the scope of this research project was to find out whether there was a risk of creating an explosive atmosphere by permeation of flammable liquid compounds during transport of dangerous goods in freight containers under normal conditions of carriage. Therefore, all aspects that had an influence on the formation of such an atmosphere had to be considered. The most important influencing factors were permeation, air change in the freight container and ambient temperature. The first step was to investigate the permeation with different packaging materials, charge and temperatures. Furthermore, the air change rates of different freight containers were measured. A few climate tests with containers on ships, e.g. to Singapore, were performed to assess normal conditions of carriage. Another important point was measuring the solvent (toluene) concentration in the gas phase in a freight container loaded with plastic intermediate bulk containers (IBCs) filled with toluene. To confirm that the measured values were in the right range, the toluene concentration in the gas phase in a container was calculated with different packaging materials, air change rates and temperatures. The results of the measurements and calculations have shown that safety layers in the packaging wall, e.g. the copolymer of ethylene and vinyl alcohol (EVOH) and polyamide, can reduce the rate of permeation by more than a decimal power, but the lower explosive limit of toluene is easily reached within a few hours at 40°C charge temperature if there is no barrier. KW - Permeation KW - Air change KW - Dangerous goods KW - Lower explosive limit KW - Freight container PY - 2013 DO - https://doi.org/10.1002/pts.994 SN - 0894-3214 VL - 26 IS - 1 SP - 1 EP - 15 PB - Wiley CY - Chichester, UK AN - OPUS4-31075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, G. A1 - Wehrstedt, Klaus-Dieter A1 - Malow, Marcus A1 - Budde, K. A1 - Mosler, J. T1 - Safe transport of acrylic acid in railroad tank cars. Part 1: Determination of the self-accelerating decomposition temperature JF - Chemical engineering & technology N2 - Experiments according to a test specified in the UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria, and numerical simulations by means of a finite element method are employed to determine the self-accelerating decomposition temperature of acrylic acid in a railroad tank car. The results demonstrate that the transport of acrylic acid in big tank cars is safe as long as some basic conditions are taken into account. KW - Acrylic acid KW - Dangerous goods KW - Finite element method KW - Railway transport KW - Self-accelerating decomposition temperature PY - 2014 DO - https://doi.org/10.1002/ceat.201300778 SN - 0930-7516 SN - 1521-4125 VL - 37 IS - 9 SP - 1460 EP - 1467 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-31298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüth, Peter A1 - Frost, K. A1 - Kurth, Lutz A1 - Malow, Marcus A1 - Michael-Schulz, Heike A1 - Schmidt, Martin A1 - Schulte, Petra A1 - Uhlig, S. A1 - Zakel, S. T1 - CEQAT-DGHS Interlaboratory Test Programme for Chemical Safety - Need of Test Methods Validation JF - CET CHEMICAL ENGINEERING TRANSACTIONS N2 - Safety experts, manufacturers, suppliers, importers, employers or consumers must be able to rely on the validity of safety-related test methods and on correct test results and assessments in the laboratory. Via the eChemPortal lots of data from the REACH registration dossiers are available. However, the quality and correctness of the information remains in the responsibility of the data submitter. Unfortunately, we found more or less appropriate information on physicochemical properties and concluded that more quality or adequacy of any data submitted will be needed. Interlaboratory tests play a decisive role in assessing the reliability of test results. Interlaboratory tests on different test methods have been performed by Bundesanstalt für Materialforschung und –prüfung (BAM) and Physikalisch-Technische Bundesanstalt (PTB) in collaboration with the QuoData GmbH during the last 10 years. Significant differences between the results of the participating laboratories were observed in all interlaboratory tests. The deviations of the test results were not caused only by laboratory faults but also by deficiencies of the test method. In view of the interlaboratory test results the following conclusions can be drawn: • To avoid any discrepancy on classification and labelling of chemicals it should become state of the art to use validated test methods and the results accompanied by the measurement uncertainty. • A need for improvement is demonstrated for all examined test methods. Thus, interlaboratory tests shall initially aim at the development, improvement and validation of the test methods and not on proficiency tests. • The laboratory management and the practical execution of the tests need to be improved in many laboratories. • The term "experience of the examiner" must be seen critically: A "long experience with many tests" is not necessarily a guarantee for correct results. T2 - 16th International Symposium on Loss Prevention and Safety Promotion in the Process Industries and accompanying exhibition. Loss prevention 2019 CY - Delft, The Netherlands DA - 16.06.2019 KW - Dangerous goods KW - Hazardous substances KW - Round robin test KW - Interlaboratory comparison KW - Test method KW - Validation KW - Quality assurance PY - 2019 UR - https://www.aidic.it/cet/19/77/001.pdf SN - 978-88-95608-74-7 DO - https://doi.org/10.3303/CET1977001 SN - 2283-9216 VL - 77 SP - 1 EP - 6 PB - Italian Association of Chemical Engineering AN - OPUS4-49496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lüth, Peter A1 - Uhlig, S. A1 - Frost, K. A1 - Malow, Marcus A1 - Michael-Schulz, Heike A1 - Schmidt, Martin A1 - Zakel, Sabine T1 - CEQAT-DGHS interlaboratory tests for chemical safety: Validation of laboratory test methods by determining the measurement uncertainty and probability of incorrect classification including so-called “Shark profiles” JF - Journal of Loss Prevention in the Process Industries N2 - Laboratory test results are of vital importance for correctly classifying and labelling chemicals as “hazardous” as defined in the UN Globally Harmonized System (GHS) / EC CLP Regulation or as “dangerous goods” as defined in the UN Recommendations on the Transport of Dangerous Goods. Interlaboratory tests play a decisive role in assessing the reliability of laboratory test results. Interlaboratory tests performed over the last 10 years have examined different laboratory test methods. After analysing the results of these interlaboratory tests, the following conclusions can be drawn: 1. There is a need for improvement and validation for all laboratory test methods examined. 2. To avoid any discrepancy concerning the classification and labelling of chemicals, the use of validated laboratory test methods should be state of the art, with the results accompanied by the measurement uncertainty and (if applicable) the probability of incorrect classification. This paper addresses the probability of correct/incorrect classification (for example, as dangerous goods) on the basis of the measurement deviation obtained from interlaboratory tests performed by the Centre for quality assurance for testing of dangerous goods and hazardous substances (CEQAT-DGHS) to validate laboratory test methods. This paper outlines typical results (e.g. so-called “Shark profiles” – the probability of incorrect classification as a function of the true value estimated from interlaboratory test data) as well as general conclusions and steps to be taken to guarantee that laboratory test results are fit for purpose and of high quality. T2 - 13th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE 2020) CY - Brunswick, Germany DA - 27.07.2020 KW - Dangerous goods KW - Hazardous substances KW - Interlaboratory test KW - Test method KW - Validation KW - Quality assurance KW - Measurement uncertainty KW - Incorrect classification KW - Shark profiles PY - 2021 DO - https://doi.org/10.1016/j.jlp.2021.104532 SN - 0950-4230/ VL - 72 SP - 104532 PB - Elsevier Ltd. AN - OPUS4-52751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -