TY - JOUR A1 - Behnke, Thomas A1 - Mathejczyk, J.E. A1 - Brehm, Robert A1 - Würth, Christian A1 - Gomes, F.R. A1 - Dullin, C. A1 - Napp, J. A1 - Alves, F. A1 - Resch-Genger, Ute T1 - Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development JF - Biomaterials N2 - Current optical probes including engineered nanoparticles (NPs) are constructed from near infrared (NIR)-emissive organic dyes with narrow absorption and emission bands and small Stokes shifts prone to aggregation-induced self-quenching. Here, we present the new asymmetric cyanine Itrybe with broad, almost environment-insensitive absorption and emission bands in the diagnostic window, offering a unique flexibility of the choice of excitation and detection wavelengths compared to common NIR dyes. This strongly emissive dye was spectroscopically studied in different solvents and encapsulated into differently sized (15, 25, 100 nm) amino-modified polystyrene NPs (PSNPs) via a one-step staining procedure. As proof-of-concept for its potential for pre-/clinical imaging applications, Itrybe-loaded NPs were surface-functionalized with polyethylene glycol (PEG) and the tumor-targeting antibody Herceptin and their binding specificity to the tumor-specific biomarker HER2 was systematically assessed. Itrybe-loaded NPs display strong fluorescence signals in vitro and in vivo and Herceptin-conjugated NPs bind specifically to HER2 as demonstrated in immunoassays as well as on tumor cells and sections from mouse tumor xenografts in vitro. This demonstrates that our design strategy exploiting broad band-absorbing and -emitting dyes yields versatile and bright NIR probes with a high potential for e.g. the sensitive detection and characterization of tumor development and progression. KW - Nanoparticle KW - Fluorescence KW - In vitro test KW - In vivo test KW - Surface modification KW - Cytotoxicity PY - 2013 DO - https://doi.org/10.1016/j.biomaterials.2012.09.028 SN - 0142-9612 VL - 34 IS - 1 SP - 160 EP - 170 PB - Elsevier CY - Oxford AN - OPUS4-26877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böhmert, L. A1 - Niemann, B. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Cytotoxicity of peptide-coated silver nanoparticles on the human intestinal cell line Caco-2 JF - Archives of toxicology N2 - Silver nanoparticles are used in a wide range of consumer products such as clothing, cosmetics, household goods, articles of daily use and pesticides. Moreover, the use of a nanoscaled silver hydrosol has been requested in the European Union for even nutritional purposes. However, despite the wide applications of silver nanoparticles, there is a lack of information concerning their impact on human health. In order to investigate the eVects of silver nanoparticles on human intestinal cells, we used the Caco-2 cell line and peptide-coated silver nanoparticles with deWned colloidal, structural and interfacial properties. The particles display core diameter of 20 and 40 nm and were coated with the small peptide L-cysteine L-lysine L-lysine. Cell viability and proliferation were measured using Promegas CellTiter-Blue® Cell Viability assay, DAPI staining and impedance measurements. Apoptosis was determined by Annexin-V/7AAD staining and FACS analysis, membrane damage with Promegas LDH assay and reactive oxygen species by dichloroXuorescein assay. Exposure of proliferating Caco-2 cells to silver nanoparticle induced decreasing adherence capacity and cytotoxicity, whereby the formation of reactive oxygen species could be the mode of action. The eVects were dependent on particle size (20, 40 nm), doses (5–100 μg/mL) and time of incubation (4–48 h). Apoptosis or membrane damage was not detected. KW - Oral uptake KW - Intestinal cells KW - Peptide-coated silver nanoparticles KW - Cytotoxicity KW - Nanotechnology KW - Small-angle X-ray scattering KW - SAXS PY - 2012 DO - https://doi.org/10.1007/s00204-012-0840-4 SN - 0340-5761 SN - 1432-0738 VL - 86 IS - 7 SP - 1107 EP - 1115 PB - Springer CY - Berlin ; Heidelberg [u.a.] AN - OPUS4-26267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Orts Gil, Guillermo A1 - Laube, G. A1 - Natte, Kishore A1 - Veh, R.W. A1 - Österle, Werner A1 - Kneipp, Janina T1 - Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects JF - Analytical and bioanalytical chemistry N2 - Cell cultures form the basis of most biological assays conducted to assess the cytotoxicity of nanomaterials. Since the molecular environment of nanoparticles exerts influence on their physicochemical properties, it can have an impact on nanotoxicity. Here, toxicity of silica nanoparticles upon delivery by fluid-phase uptake is studied in a 3T3 fibroblast cell line. Based on XTT viability assay, cytotoxicity is shown to be a function of (1) particle concentration and (2) of fetal calf serum (FCS) content in the cell culture medium. Application of dynamic light scattering shows that both parameters affect particle agglomeration. The DLS Experiments verify the stability of the nanoparticles in culture medium without FCS over a wide range of particle concentrations. The related toxicity can be mainly accounted for by single silica nanoparticles and small agglomerates. In contrast, agglomeration of silica nanoparticles in all FCS-containing media is observed, resulting in a decrease of the associated toxicity. This result has implications for the evaluation of the cytotoxic potential of silica nanoparticles and possibly also other nanomaterials in standard cell culture. KW - Agglomeration KW - Cytotoxicity KW - Fibroblast cells KW - Serum proteins KW - Silica nanoparticles PY - 2011 DO - https://doi.org/10.1007/s00216-011-4893-7 SN - 1618-2642 SN - 1618-2650 VL - 400 IS - 5 SP - 1367 EP - 1373 PB - Springer CY - Berlin AN - OPUS4-23678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gea, M. A1 - Bonetta, S. A1 - Iannarelli, L. A1 - Giovannozzi, A. M. A1 - Maurino, V. A1 - Bonetta, S. A1 - Hodoroaba, Vasile-Dan A1 - Armato, C. A1 - Rossi, A. M. A1 - Schilirò, T. T1 - Shape-engineered titanium dioxide nanoparticles (TiO2-NPs): cytotoxicity and genotoxicity in bronchial epithelial cells JF - Food and Chemical Toxicology N2 - The aim of this study was to evaluate cytotoxicity (WST-1 assay), LDH release (LDH assay) and genotoxicity (Comet assay) of three engineered TiO2-NPs with different shapes (bipyramids, rods, platelets) in comparison with two commercial TiO2-NPs (P25, food grade). After NPs characterization (SEM/T-SEM and DLS), biological effects of NPs were assessed on BEAS-2B cells in presence/absence of light. The cellular uptake of NPs was analyzed using Raman spectroscopy. The cytotoxic effects were mostly slight. After light exposure, the largest cytotoxicity (WST-1 assay) was observed for rods; P25, bipyramids and platelets showed a similar effect; no effect was induced by food grade. No LDH release was detected, confirming the low effect on plasma membrane. Food grade and platelets induced direct genotoxicity while P25, food grade and platelets caused oxidative DNA damage. No genotoxic or oxidative damage was induced by bipyramids and rods. Biological effects were overall lower in darkness than after light exposure. Considering that only food grade, P25 and platelets (more agglomerated) were internalized by cells, the uptake resulted correlated with genotoxicity. In conclusion, cytotoxicity of NPs was low and affected by shape and light exposure, while genotoxicity was influenced by cellular-uptake and aggregation tendency. KW - Nanoparticles KW - Shape-engineered KW - Raman spectroscopy KW - Genotoxic and oxidative damage KW - Cytotoxicity PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S0278691519301036?via%3Dihub DO - https://doi.org/10.1016/j.fct.2019.02.043 SN - 0278-6915 SN - 1873-6351 VL - 127 SP - 89 EP - 100 PB - Elsevier AN - OPUS4-47532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kasper, J. A1 - Hermanns, M. A1 - Bantz, C. A1 - Maskos, Michael A1 - Stauber, R. A1 - Pohl, C. A1 - Unger, R. E. A1 - Kirkpatrick, J.C. T1 - Inflammatory and cytotoxic responses of an alveolar-capillary coculture model to silica nanoparticles: comparison with conventional monocultures JF - Particle and fibre toxicology N2 - To date silica nanoparticles (SNPs) play an important role in modern technology and nanomedicine. SNPs are present in various materials (tyres, electrical and thermal insulation material, photovoltaic facilities). They are also used in products that are directly exposed to humans such as cosmetics or toothpaste. For that reason it is of great concern to evaluate the possible hazards of these engineered particles for human health. Attention should primarily be focussed on SNP effects on biological barriers. Accidentally released SNP could, for example, encounter the alveolar-capillary barrier by inhalation. In this study we examined the inflammatory and cytotoxic responses of monodisperse amorphous silica nanoparticles (aSNPs) of 30 nm in size on an in vitro coculture model mimicking the alveolar-capillary barrier and compared these to conventional monocultures. Methods Thus, the epithelial cell line, H441, and the endothelial cell line, ISO-HAS-1, were used in monoculture and in coculture on opposite sides of a filter membrane. Cytotoxicity was evaluated by the MTS assay, detection of membrane integrity (LDH release), and TER (Transepithelial Electrical Resistance) measurement. Additionally, parameters of inflammation (sICAM-1, IL-6 and IL-8 release) and apoptosis markers were investigated. Results Regarding toxic effects (viability, membrane integrity, TER) the coculture model was less sensitive to apical aSNP exposure than the conventional monocultures of the appropriate cells. On the other hand, the in vitro coculture model responded with the release of inflammatory markers in a much more sensitive fashion than the conventional monoculture. At concentrations that were 10-100fold less than the toxic concentrations the apically exposed coculture showed a release of IL-6 and IL-8 to the basolateral side. This may mimic the early inflammatory events that take place in the pulmonary alveoli after aSNP inhalation. Furthermore, a number of apoptosis markers belonging to the intrinsic pathway were upregulated in the coculture following aSNP treatment. Analysis of the individual markers indicated that the cells suffered from DNA damage, hypoxia and ER-stress. Conclusion We present evidence that our in vitro coculture model of the alveolar-capillary barrier is clearly advantageous compared to conventional monocultures in evaluating the extent of damage caused by hazardous material encountering the principle biological barrier in the lower respiratory tract. KW - Silica nanoparticles KW - Alveolar-capillary coculture model KW - Cytotoxicity PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-254217 DO - https://doi.org/10.1186/1743-8977-8-6 SN - 1743-8977 VL - 8 IS - 6 SP - 1 EP - 16(?) PB - BioMed Central CY - London AN - OPUS4-25421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kasper, J. A1 - Hermanns, M.I. A1 - Bantz, C. A1 - Koshkina, Olga A1 - Lang, Thomas A1 - Maskos, Michael A1 - Pohl, C. A1 - Unger, R. E. A1 - Kirkpatrick, C.J. T1 - Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins JF - Archives of toxicology N2 - Amorphous silica nanoparticles (aSNPs) gain increasing popularity for industrial and therapeutic claims. The lung with its surface area of 1006#8211;140 m² displays an ideal target for therapeutic approaches, but it represents also a serious area of attack for harmful nanomaterials. The exact nature of the cytotoxic effects of NPs is still unknown. Furthermore, cellular pathways and the destiny of internalized NPs are still poorly understood. Therefore, we examined the cytotoxicity (MTS, LDH) and inflammatory responses (IL-8) for different-sized aSNPs (30, 70, 300 nm) on our lung epithelial cells line NCI H441 and endothelial cell line ISO-HAS-1. Additionally, colocalization studies have been conducted via immunofluorescence staining for flotillin-1- and flotillin-2-bearing endocytic vesicles. Subsequently, the relevance of flotillins concerning the viability of aSNP-exposed epithelial cells has been evaluated using flotillin-1/2 depleted cells (siRNA). This study reveals the relevance of the nanoparticle size regarding cytotoxicity (MTS, LDH) and inflammatory responses (IL-8), whereat the smaller the size of the nanoparticle is, the more harmful are the effects. All different aSNP sizes have been incorporated in flotillin-1- and flotillin-2-labelled vesicles in lung epithelial and endothelial cells, which display a marker for late endosomal or lysosomal structures and appear to exhibit a clathrin- or caveolae-independent mode of endocytosis. Flotillin-depleted H441 showed a clearly decreased uptake of aSNPs. Additionally, the viability of aSNP-exposed cells was reduced in these cells. These findings indicate a contribution of flotillins in as yet unknown (clathrin or caveolae-independent) endocytosis mechanisms and (or) endosomal storage. KW - Silica nanoparticles KW - Alveolar-capillary barrier KW - Lung epithelial cells KW - Endothelial cells KW - Endocytosis KW - Flotillin-1 KW - Flotillin-2 KW - Cytotoxicity KW - Inflammatory response PY - 2012 UR - http://link.springer.com/content/pdf/10.1007%2Fs00204-012-0876-5 DO - https://doi.org/10.1007/s00204-012-0876-5 SN - 0340-5761 SN - 1432-0738 SP - 1 EP - 13(?) PB - Springer CY - Berlin ; Heidelberg [u.a.] AN - OPUS4-26195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matschulat, Andrea A1 - Drescher, Daniela A1 - Kneipp, Janina T1 - Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems JF - ACS nano N2 - Surface-enhanced Raman scattering (SERS) labels and probes consisting of gold and silver nanoaggregates and attached reporter molecules can be identified by the Raman signature of the reporter molecule. At the same time, SERS hybrid probes deliver sensitive molecular structural information on their nanoenvironment. Here we demonstrate full exploitation of the multifunctional and multiplexing capabilities inherent to such nanoprobes by applying cluster methods and principal components approaches for discrimination beyond the visual inspection of individual spectra that has been practiced so far. The reported results indicate that fast, multivariate evaluation of whole sets of multiple probes is feasible. Spectra of five different reporters were shown to be separable by hierarchical clustering and by principal components analysis (PCA). In a duplex imaging approach in live cells, hierarchical cluster analysis, K-means clustering, and PCA were used for imaging the positions of different types of SERS probes along with the spectral information from cellular constituents. Parallel to cellular imaging experiments, cytotoxicity of the SERS hybrid probes containing aromatic thiols as reporters is assessed. The reported results suggest multiplexing applications of the nontoxic SERS nanoprobes in high density sensing and imaging in complex biological structures. KW - Surface-enhanced Raman scattering KW - Nanosensor KW - Para-aminobenzenethiol KW - 2-naphthalenethiol KW - 3T3 cells KW - Principal component analysis KW - Hierarchical cluster analysis KW - Cytotoxicity KW - Imaging PY - 2010 DO - https://doi.org/10.1021/nn100280z SN - 1936-0851 VL - 4 IS - 6 SP - 3259 EP - 3269 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Brehm, Robert A1 - Spieles, Monika A1 - Kaiser, W.A. A1 - Hilger, I. A1 - Resch-Genger, Ute T1 - Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging JF - Journal of fluorescence N2 - Aiming at the identification of new fluorescent reporters for targeted optical probes, we assessed the application-relevant features of a novel asymmetric cyanine, DY-681, in comparison to the only clinically approved dye indocyanine green (ICG), the golden imaging standard Cy5.5, and the asymmetric cyanine DY-676 successfully exploited by us for the design of different contrast agents. This comparison included the analysis of the spectroscopic properties of the free fluorophores and their thermal stability in aqueous solution as well as their cytotoxic potential. In addition, the absorption and emission features of IgG-conjugated DY-681 were examined. The trimethine DY-681 exhibited spectral features closely resembling that of the pentamethine Cy5.5. Its high thermal stability in phosphate buffer saline (PBS) solution in conjunction with its low cytotoxicity, reaching similar values as determined for Cy5.5 and DY-676, renders this dye more attractive as ICG and, due to its improved fluorescence quantum yield in PBS, also superior to DY-676. Although in PBS, Cy5.5 was still more fluorescent, the fluorescence quantum yields (Φf) of DY-681 and Cy5.5 in PBS containing 5 mass-% bovine serum albumin (BSA) were comparable. Labeling experiments with DY-681 and the model antibody IgG revealed promisingly high Φf values of the bioconjugated dye. KW - Fluorescence KW - Cyanine dye KW - Cytotoxicity KW - Stability KW - In vivo fluorescence imaging KW - Quantum yield KW - Contrast agent KW - Optical probe PY - 2010 DO - https://doi.org/10.1007/s10895-010-0603-7 SN - 1053-0509 SN - 1573-4994 VL - 20 IS - 3 SP - 681 EP - 693 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-21401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Vag, T. A1 - Haag, R. A1 - Spieles, Monika A1 - Wenzel, M. A1 - Kaiser, W.A. A1 - Resch-Genger, Ute A1 - Hilger, I. T1 - An in vitro characterization study of new near infrared dyes for molecular imaging JF - European journal of medicinal chemistry N2 - The spectroscopic properties, stability, and cytotoxicity of series of cyanine labels, the dyes DY-681, DY-731, DY-751, and DY-776, were studied to identify new tools for in vivo fluorescence imaging and to find substitutes for DY-676 recently used by us as fluorescent label in a target-specific probe directed against carcinoembryonic antigen (CEA). This probe enables the selective monitoring of CEA-expressing tumor cells in mice, yet displays only a low fluorescence quantum yield and thus, a non-optimum sensitivity. All the DY dyes revealed enhanced fluorescence quantum yields, a superior stability, and a lower cytotoxicity in comparison to clinically approved indocyanine green (ICG). With DY-681 and far-red excitable DY-731 and DY-751, we identified three dyes with improved properties compared to DY-676 and ICG. KW - In vivo fluorescence imaging KW - NIR fluorophore KW - Cytotoxicity KW - Stability KW - Fluorescence quantum yield KW - Cyanine PY - 2009 DO - https://doi.org/10.1016/j.ejmech.2009.01.019 SN - 0009-4374 SN - 0223-5234 VL - 44 IS - 9 SP - 3496 EP - 3503 PB - EDIFOR CY - Paris AN - OPUS4-19712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Janicke, B. A1 - Alm, K. A1 - Gjörloff-Wingren, A. A1 - Eriksson, H. T1 - Molecularly Imprinted Polymers Exhibit Low Cytotoxic and Inflammatory Properties in Macrophages In Vitro JF - Applied Sciences N2 - Molecularly imprinted polymers (MIPs) against sialic acid (SA) have been developed as a detection tool to target cancer cells. Before proceeding to in vivo studies, a better knowledge of the overall effects of MIPs on the innate immune system is needed. The aim of this study thus was to exemplarily assess whether SA-MIPs lead to inflammatory and/or cytotoxic responses when administered to phagocytosing cells in the innate immune system. The response of monocytic/macrophage cell lines to two different reference particles, Alhydrogel and PLGA, was compared to their response to SA-MIPs. In vitro culture showed a cellular association of SA-MIPs and Alhydrogel, as analyzed by flow cytometry. The reference particle Alhydrogel induced secretion of IL-1b from the monocytic cell line THP-1, whereas almost no secretion was provoked for SA-MIPs. A reduced number of both THP-1 and RAW 264.7 cells were observed after incubation with SA-MIPs and this was not caused by cytotoxicity. Digital holographic cytometry showed that SA-MIP treatment affected cell division, with much fewer cells dividing. Thus, the reduced number of cells after SA-MIP treatment was not linked to SA-MIPs cytotoxicity. In conclusion, SA-MIPs have a low degree of inflammatory properties, are not cytotoxic, and can be applicable for future in vivo studies. KW - Molecularly imprinted polymers KW - Digital holographic cytometry KW - Cytotoxicity KW - Proinflammatory cytokines PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552250 DO - https://doi.org/10.3390/app12126091 SN - 2076-3417 VL - 12 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -